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Summary

Résumé (summary in French)

Ce mémoire présente mon travail au sein du laboratoire de recherche Geoloc de l’Institut Français
des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux (IFSTTAR), se
déroulant d’avril à septembre 2019. Le sujet de ce stage est tourné autour du développement d’une
application Android utilisant les mesures GNSS brutes reçues par le récepteur du téléphone pour
le calcul d’une position en temps réel. Plus particulièrement, l’intégration des signaux GALILEO
(GNSS européen) dans l’application est étudié dans le but d’améliorer le positionnement et calculer
une solution multi-constellation et multi-fréquence. Avec le nouveau téléphone Xiaomi Mi8 sorti en
2018, il est en effet possible de recevoir les fréquences L1 et L5. En joignant les constellations GPS
et GALILEO, il devient alors possible de réfléchir à du Positionnement de Point Précis en temps
réel (PPP-RTK) directement à l’intérieur d’un téléphone. Ce travail de recherche liste les difficultés
du positionnement par téléphone Android, ainsi que les données nécessaires à un positionnement
précis multi-constellation. Les résultats de l’algorithme en Positionnement de Point Standard (SPP)
développé durant ce stage sont étudiés et une proposition d’algorithme de PPP-RTK est détaillé, à
des fins d’amélioration possible de l’application.

Mots-clés : GNSS, Android, Smartphone, SPP, PPP-RTK, RTCM streams, GALILEO.

Summary

This thesis presents my work within the Geoloc laboratory of the French institute of science and
Technology for transport, development, and network (IFSTTAR). The subject is the development
of an Android application using raw GNSS measurements acquired by the phone’s receiver for com-
putation of a position. More particularly, focus was given on integrating the GALILEO signals, the
European GNSS system. The goal is to compute a multi-constellation and multi-frequency solution
for enhanced precision. With the newly available Xiaomi Mi8 smartphone which came out in 2018,
it is now possible to receive bi-frequency GNSS measurements (L1/L5) on an Android device. By
joining GPS and GALILEO constellation, real-time Precise Point Positioning can now be studied for
integration inside a smartphone. This research paper lists the positioning challenges coming with
Android devices and the necessary data to perform precise positioning with multiple constellations.
Results from the SPP algorithm developed during this internship are presented, and a proposal for a
PPP-RTK algorithm is detailed for future enhancement of the application.

Keywords : GNSS, Android, Smartphone, SPP, PPP-RTK, RTCM streams, GALILEO.
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Introduction

In 2016, Google announced the availability of GNSS raw measurements directly through the
Google API, starting with Android version 7 (Nougat). This led to the development of several po-
sitioning apps (GNSS Compare [15], PPP Wizlite [32], ...) used to assess for the first time the
quality of GNSS signals received on smartphones. Since then, the number of research papers on
precise positioning with a smartphone has kept growing, and the development of new generations of
smartphones allowed to push back the limits of low-cost receivers capacities. In June 2018, Xiaomi
released a new smartphone “Xiaomi Mi8", integrating a Broadcom BCM47755 GNSS receiver with
dual-frequency (L1/L5) capacities. This was an essential step in smartphones and IoT developments,
since it opens the way for highly precise positioning algorithm.

This research paper presents my work at the Geoloc laboratory (IFSTTAR), which took place
from April to September 2019. The subject is the development of an Android application using
raw GNSS measurements acquired by the phone’s receiver for computation of a position. More
particularly, focus was given on integrating the GALILEO signals, the European GNSS system, to
compute a multi-constellation and multi-frequency solution for an enhanced precision. The labora-
tory already possessed an application called “GeolocPVT”, developed during a previous internship by
José Gilberto Resendiz Fonseca. My job was to enhance this existing solution for more precise posi-
tioning capacities. The laboratory recently acquired a Xiaomi Mi8 smartphone, and this application
therefore needs to be upgraded to make use of these measurements and study the quality of them.
After reviewing the initial state of the app, challenges with Android development and the raw GNSS
measurements will be presented. A large part of this internship has been focusing on the retrieval of
real-time streams for enhanced positioning. Details on their integration in an Android application are
given. The developed algorithms to enhance the precision of the computed position are presented,
along with analysis of the results obtained by the application. Finally, a proposal of a PPP-RTK
algorithm for precise positioning on a smartphone is detailed for future updates of the application.

This work is part of the laboratory activity on the “Raw Measurements Task Force", a workforce
organized by the European GNSS Agency (GSA). Its objective is to share the knowledge between
laboratories around the world related to GNSS raw measurements coming from Android devices, es-
pecially those from GALILEO signals. Every year a conference is organized in the GSA headquarters
(Prague, Czech Republic) for presenting the year’s results. Since it happened during my internship,
I went to present the lab’s application “GeolocPVT" and the development I made during my first
two months. As we’ll see in the different sections, this allowed me to refocus my work on important
points presented by other laboratories during this presentation.
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This chapter introduces the development of an application on Android, summarizing the State
of the Art on computing a precise position using the raw measurements available from Google API.
We also go into details on how GNSS observation are retrieved from those raw measurements and
the challenges that come with them.

1.1 State of the Art
With the growing use of IoT devices for research and mass-market purposes, the need for low-cost

precise positioning is increasing significantly. In 2016, Google announced the availability of GNSS raw
measurements directly through the Google API, starting with Android version 7 (Nougat). This leads
to the development of several positioning apps (GNSS Compare [15], PPP Wizlite [32], ...) used to
assess for the first time the quality of GNSS signals received on smartphones. DGNSS-RTK technique
was used to compute positions from those measurements, either in post-processing or in real-time
[31]. However, real-time PPP or PPP-RTK are still not as easily manageable as DGNSS-RTK since
measurement corrections of atmospheric effects need to be modeled.

Following that, Xiaomi released a new smartphone “Xiaomi Mi8" in June 2018, integrating a
Broadcom BCM47755 GNSS receiver with dual-frequency (L1/L5) capacities. This was an essential
step in smartphones and IoT developments, opening the way for highly precise positioning algorithm.
With multiple frequency, signal combination, which is mandatory for ambiguity fixation and signal
corrections (e.g., Iono-free combination), is possible.

Following the release of the phone, quality assessment of the GNSS receiver, in particular phase
measurements’ quality, has been done in several studies [36, 43, 12], where post-processing PPP
using multiple constellations and frequencies have been realized too. Robustelli et al.[36] presented a
positioning solution with ambiguity estimation, also known as floating ambiguities, with the Mi8 using
multiple constellation (GPS, GLONASS, GALILEO) and only L1/E1 measurements. Using RTKLIB
as a post-processing software, they achieved a sub-meter positioning in low-multipath environment
after 1 hour of convergence time, showing that multi-constellation improved positioning compared
to GPS only solution, which highlights the need for multi-constellation when computing PPP. Using
a different model, Wu et al. [43] achieved a sub-meter positioning after a convergence time of 102
min, rapidly converging afterward to a 0.2 m accuracy after 116 min.

Nottingham Scientific Limited team (NSL) with the FLAMINGO initiative [12] (Fulfilling en-
hanced Location Accuracy in the Mass-market through Initial GalileO services) performed a kine-
matic positioning reproducing the movement of a pedestrian walking on a straight line. Although
their protocol is different from previous studies, they showed a final RMSE of 2.23m using PPP,
impacted mainly by the multipath effects of the experience environment. The positioning compu-
tations were once again performed on RTKLIB in post-processing. It is important to note that the
FLAMINGO initiative’s final goal is to develop a complete SDK (Software Development Kit) to be
integrated inside applications with a positioning accuracy of a few decimeters in real-time. Right
now, this initiative is still in the early stage of development.

In a study published in January 2019, Zhu et al. [26] demonstrated precise dynamic positioning in
SPP (no ambiguity estimation), using smartphones Huawei P10 and Samsung S8. This was performed
by combining GNSS and INS observations. Phase measurements are used in a Time Differenced
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Carrier Phase (TDCP) algorithm for precise estimation of velocities, joined with a Pedestrian Dead
Reckoning (PDR) algorithm which uses the phone’s inertial sensors. This led to proper positioning
with horizontals errors up from 1 m to 3 m, with a RMS value of 2.57 m for the GNSS/PDR
approached, compare to 3.18m with GNSS only filtering. Results in poor environments are also
given, showing how inertial sensors of the phone can keep a right positioning solution with short
GNSS outages.

All these examples were performed in post-processing mode and not in real-time aboard the
phone, resulting in more manageable PPP computations. Indeed, once in real-time, computations
need to account for other corrections, starting with the lack of final precise orbits from the IGS
(International GNSS Service). This leads to differences in satellite positions computations and worse
accuracy of those positions, but also more IoT related issues like Internet data consumption on-board
the app or battery consumption as well. Another solution is to use the precise corrections products
from IGS Real-Time Service (IGS-RTS), a network of processing centers sending real-time streams
under the RTCM protocol. With this, it is possible to obtain precise satellite positions in real-time,
as well as VTEC contents of the ionosphere, satellites code and phase biases.

Wang et al. [42] analyzed, and compared the precise corrections products from IGS-RTS coming
from different centers. Using the RTPosNavi_AOE software (Academy of Opto-Electronics, Beijing,
China) based on the RTKLIB software, they compared real-time PPP using real-time streams products
to post-processing PPP using IGS final products. This was done on geodesic grade receivers in
static positioning and showed good results for real-time PPP. Moreover, it presented multi-GNSS
positioning (GPS + BEIDOU), indicating that the CLK93 and CAS01 mount points of the IGS-RTS
network send corrections for four constellations: GPS, GLONASS, GALILEO, and BEIDOU. This
was not given on the CNES website at first and will be essential for the computations presented in
this paper.

1.2 Initial state of the GeolocPVT

The GeolocPVT application is a program developed by the Geoloc laboratory working under
Android OS. José Resendiz first developed it in 2018 [35] in Android 7 (API 25), then was ported to
Android 8 (API 26) by Sheng Gao and Mitsinjosoa Ramandaniaina [17].

The app functionalities when this internship started are listed here:
— Retrieval of raw GNSS measurements for L1 & L5 frequencies, for GPS and GLONASS

constellations;
— Computation of the satellites’ positions by decoding the navigation message, for the GPS

constellation only;
— Computation of user coordinates with pseudoranges measurements through least square esti-

mation, for L1 frequency only, GPS constellation only;
— GUI displaying the user’s coordinates, with Open Street Map (OSM) support;
— Logging of raw measurements, user position, satellites ephemerises into external files.
The main framework of the app was completed, and the Graphical User Interface (GUI) was

setup. It allowed me to focus directly on the positioning computations, which were present but
limited and yet to be verified. Before adding more precise positioning capacities to the app, it was
necessary to assess different part of the computations code written before me, which were working
but their solution had to be appropriately checked, as we will see in the next sections.

1.3 Raw measurements

Raw measurements can be accessed in Android devices using the Google API android.location.
Not every smartphone is enabled with this functionality, and a list of compatible devices can be found
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on the Google developer website 1. As explained in the introduction, the device I have been working
on during this internship is the Xiaomi Mi8. The Geoloc lab has just acquired this smartphone which
came out during 2018 because of its new capacities: the first smartphone with the dual-frequency
reception (L1/L5), with phase measurements support. As we have seen in section 1.1, many papers
came out during the year assessing this phone measurements’ quality, as it opens the door to real-time
Precise Point Positioning (PPP-RTK).

First, we are going to look into how Android API manages the raw GNSS measurements and how
to properly retrieve them, before talking about the challenges of computing a positioning solution
with Android. This section is based on a White Paper written by the European GNSS Agency (GSA)
[1] and the 2018 IPIN conference [16].

Raw measurements are available through an event defined in the application MainActivity class.
The application can register these events using the Callback function defined in the class Location-
Manager to receive the measurements.

1 LocationManager . registerGnssMeasurementsCallback ( mGnssMeasurementsEventCallback )

1.3.1 Pseudorange generation

Because Raw GNSS Measurements on Android was not made for researchers at first, but for
the devices’ manufacturers, the API was not build as a GNSS receiver would be. Pseudorange
measurements are not provided directly by the system. Instead, it needs to be generated using the
time measurements provided by the GnssMeasurement and GnssClock classes. Received time tRx
and transmitted time tTx, provided in nanoseconds, are used with c the speed of light to compute
the pseudorange as defined in equation 1.1.

P = (tRx − tTx)
1e9 c (1.1)

The transmitted time tTx is directly provided by the API, but the tRx needs to be reconstructed
through different time measurements. Receiver clocks is not align with the GNSS Time at first.
Because of that, biases need to be applied to the received time associated with the measurements
to align the tTx and tRx on the same time scale. This is done by using the FullBiasNanos and
BiasNanos variable provided by the GnssClock class. Using the code described below, one can find
the received time and use it with the transmitted time to compute the pseudorange.

1 t_rx_gnss = TimeNanos + TimeOffsetNanos - ( FullBiasNanos + BiasNanos )
2 numberNanoSecondsWeek = 6.048 e14
3

4 t_rx = mod(t_rx_gnss , numberNanoSecondsWeek )

Note that the equation is valid only for GPS and GALILEO measurements with their Time of
Week (ToW) decoded. An inter-system bias is otherwise needed. For more information on the
pseudorange generation, please refer to the GSA White Paper [1] and the Android Developer website
[21].

An important thing to keep in mind when performing computations with GNSS measurements
from Android devices is that receiver clocks used drift rapidly and needs to be corrected continuously,
leading to problems in measurements. This will be detailed in section 1.4.

1.3.2 Carrier phase measurements

Carrier phase measurements are easier to retrieve, though they are not available on every device.
Since API 26, they can be accessed through the function GnssMeasurment.getAccumulatedDeltaRangeMeters.
The measurements are given in meters and not cycle. Information on the quality of the measurement

1. https://developer.android.com/guide/topics/sensors/gnss

https://developer.android.com/guide/topics/sensors/gnss
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can also be retrieved using the function GnssMeasurment.getAccumulatedDeltaRangeStates, which
provide a bit string representing different flags about the phase, which can be useful for cycle-slip
detection.

1.4 Challenges related to Android GNSS measurements
During this internship, I faced different challenges related to Android development when one

wants to use the raw GNSS measurements for computing a position. I tried to summarize them in
this section to explain the choices made during the design of the positioning algorithm.

1.4.1 Pseudorange and phase divergence

Pseudorange are reconstructed in the Google API using time measurements (see section 1.3.1).
Because of the quality of the receiver clock, the FullBiasNanos parameter will show a 256 nanoseconds
jump every 3 seconds, leading to discontinuities in the pseudorange measurement between certain
epochs [18]. Since we are estimating the receiver clock error, this "rollover" is usually adsorbed in
this parameter estimation and does not cause any issue. However, the phase measurements do not
show this kind of jumps in time, since it is not obtained through time measurements but directly
from the API. When comparing the two measurements over time, I found that the pseudorange tends
to diverge from the phase. This leads to discrepancies between the measurements and errors in the
computations if there are used together. This is why it is essential to keep the FullBiasNanos value
fixed after the first measurement is received. No divergence between measurements can be seen
anymore. However, it also means that our receiver clock estimation will vary very fast from one
epoch to another. It is therefore important to take that into account later into our Kalman filter
when accumulating epochs and to also estimate a clock drift in the state vector.

Figure 1.1 – Pseudorange generation with a non-fix and a fixed Fullbias (Source: Miquel Garcia [18])
.

1.4.2 Multiple systems and frequencies

Depending on the phone model, the GNSS receiver chipset varies, along with constellation the
device can receive. As of today, five operational constellations of satellites are available around the
world: GPS (USA), GLONASS (Russia), GALILEO (EU), BEIDOU (China) and QZSS (Japan). The
Xiaomi Mi8 embeds a Broadcom receiver BCM47755 that can receive all those five constellations,
depending on the user’s location on the Earth (QZSS being a regional system only). Depending on
the signal plan and the design of the constellation, multiple frequency of the satellites can be received
in the device. As explained in section 1.1, the Xiaomi Mi8 can receive the L1 and L5 signals from
the GPS satellites, but also the E1 and E5a from GALILEO satellites since there are located on the
same frequency bands.
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However, even if all those signals are received, this does not mean that every navigation mes-
sages are available. Only Broadcom receivers (in opposition to Qualcomm receivers) can decode
navigation messages [30] depending on the constellation. After being tested in the Mi8, only GPS
and GLONASS navigation were present. It is because signals containing the navigation are only
tracked until the ToW is decoded. Once done, the GNSS receiver switches to pilot signals, which
does not contain the navigation message, leading to incomplete navigation messages for GALILEO
constellation. Therefore, it is mandatory to perform multi-constellation computations to acquire
the navigation messages differently. It is usually done through the Internet, using either the Secure
User-Plan Location (SUPL) Google service or another Real-Time Service like IGS-RTS. Both provide
the ephemeris information sent in the navigation message of a system. As explained in section 1.2,
the application was decoding the GPS navigation message to compute a position in its initial state,
and one of these solutions had to be implemented in the app support GALILEO satellites. Details on
real-time ephemeris retrieval are given in chapter 2 and explain the choices made for the application.

1.4.3 Satellites’ tracking and signal noise

Another issue with Android device, more related to the design of the GNSS chipset, is the tracking
capabilities of the receiver. While lots of signals tend to be visible, some of them are not correctly
tracked and can not be used in computations. These measurements usually have a very low C/n0
(i.e., Carrier-to-noise ratio) and do not have there ToW decoded. Note that we will be referring here
at the C/n0 values and not SNR values because only the former are available in the Xiaomi GNSS
measurements. Since they are closely related to each other, this does not impact our computations
nor our analysis. Furthermore, sometimes, a signal will tend to disappear, and another one will
start at the same time. This can be seen in the figure 1.3 where the satellite E4 from GALILEO
constellation stop being tracked on its E5a signal and the E5a signal from satellite E24 start being
tracked, then stop again. Since there is no way to control these cut in observations from Google
API, the code needs to adapt these changes. However, losing track of a satellite’s signal means that
we can not converge anymore on the phase ambiguity estimation of this signal, and this particularly
crucial for Precise Point Positioning. Possible explanations for this signals’ lost can be either an
efficient use by the receiver of its canals, which decides to track the satellites with the bests C/n0,
or only due to the poor antenna inside the phone. As pointed out by multiple researches, the GNSS
antenna inside a phone has terrible properties compare to a geodesic grade antenna, leading it to
be more subject to cycle-slips (e.g., figure 1.2) or multipath. Signals also tend to have a much
weaker C/n0. The positioning algorithm needs to account for these issues with discarding wrong
measurements, especially for real-time and dynamic positioning matters. In figure 1.4 is represented
the evolution of the C/n0 values for the satellites received by the Xiaomi Mi8. We can see that the
BEIDOU satellites tend to have weaker signals than the GALILEO and GPS constellation. Also, less
signal from the L5 band are received, which is expected for GPS constellation since not all satellites
send them, but all GALILEO satellites send E5a signals. However, they tend to have better C/n0
than the L1 signals when received.

The measurement’s noise on Android devices are not directly related to the elevation of a satellite,
as it is with geodesic grade receivers (figure 1.5). Therefore, it is important to use weighting
matrix based on the SNR or C/n0 value of the signal, like it is done for positioning in challenging
environments [45] and will be detailed in section 3.2.4. Because of that, satellites with a low C/n0,
i.e. below 25 dB-Hz, need to be removed completely to enhance the positioning [29]. The same
goes for satellites below 15◦ elevation.
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Figure 1.2 – Example of cycle slip in phase measurement.

Figure 1.3 – Example of satellites and signals visible during an observation (26/08/2019).

Figure 1.5 – C/n0 received by a Xiaomi Mi8 compared to a geodesic grade receiver [41].

The effect of the human body on the signals received by the phone is also an important issue
related to Android devices. During testing of the position computations, the phone was set on
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Figure 1.4 – C/n0 values observed by the Xiaomi Mi8 (Credits: Yazheng Wei).

an open-sky environment on pillar, where no significant mask was present, allowing us to test the
capacities of the phone. However, the human body is a large mask for radio frequencies. Phones
being used in a user’s hand, it means that a large portion of the sky will be masked, impacting
the positioning capacities. It has been observed in certain data sets, where error spikes are present
at the beginning and the end of the positioning. These spikes are directly related to the operator
being near the phone. The study of this phenomenon was not pursued because of lack of time, but
future development should focus on this issue for correct handling of it. A possible way would be the
development of measurement weighting model specifically designed for smartphones GNSS antenna.

1.5 Development with Android devices

Before this internship, I had basic knowledge and only a little experience of the Android devel-
opment world. The same goes for Java, one of the native languages of Android, although I had
some experience in object-oriented languages (C++, Python). Therefore, I had to learn the design
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of an Android application, starting with the tools used for efficient development. The easiest way to
develop Android applications is to use Android Studio, an IDE developed by Google, which help to
compile the many files needed for an Android project. However, it is not made for analysis of results,
as it is not suited to display graphs, which is why for results analysis I decided to develop a Python
library to analyze the files outputted from the app.

1.5.1 Android development

Android applications are a compilation of different languages, not only Java. Indeed, Java is the
core of the app and will deal with the computations, but also the Graphical User Interface (GUI). The
GUI of an app is divided in code called Fragments, which divide for example the Monitor tab from
the Map tab. Event handling is coded in Java, but the design is coded in XML language. Android
Studio integrates a designer to build these XML files more easily, limiting the need to code all the
interfaces in XML directly. To compile those languages together (APK ), Android programming
require to use a third language called Gradle. This language will define the resources and libraries
needed for our app and "articulate" the compilation, similarly to what the make language does for
C/C++ programming.

With Android Studio, all of these languages are taken care off, and once the files and the proper-
ties of the project are correctly defined, compilation on an Android device can be performed. When
this is done, the app is installed on the device, which can be launched later. Android Studio also al-
lows debugging in real-time of an app launched on a connected device, for step-by-step debugging. It
is mandatory for efficient programming, especially when we are dealing with events and computations
happening in real-time like it is done in GeolocPVT. However, for debugging of a GNSS positioning
algorithm, it is better to acquire the data in the right environment (open-sky, urban canyon,...) and
to replay the data inside the same code later, since we cannot receive those signals inside a building.
Android Studio also allows this, and this is how the algorithms that will be developed in the next
sections have been verified.

Several adjustments have been made to app GUI and organization during this internship, which
are not presented in depth during this report. In summary, the following important adjustments have
been made:

— Separation between computations and GUI has been made. All computations related classes
have been added to a separate Android library called Geoloclib, to pass it more easily to other
future apps;

— Some part of the code as been added to the GoGPS library, since the library contained bugs
and has been enhanced to answer our purposes;

— Enhancement of all the fragments design to support the new functionalities of the app.;
— Extraction of RINEX are now possible in the app, for post-processing of the observations with

other software.

In appendix A, a simplified diagram class can be found, representing the major classes of the
app. Because of the large number of dependencies, they are not represented in the diagram to
make it easier to read. Classes in grey are preexisting classes that were subject to no significant
updates, whereas blue classes have been received substantial updates to enhance their capacities.
Green classes are new classes added during this internship.
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Figure 1.6 – Screenshots of the new app version (V2.1).

1.5.2 Python analysis tool

Files containing the observations used for the computations, but also the ephemeris and the
precise corrections retrieved, can be extracted for each survey with the phone. To analyze the data,
I developed a visualization library in Python language, the same way the GNSS Analysis Tool from
Google analyzes the data outputted by the GNSS Logger application. This code is adapted to the
custom file format of the app. Python code also has been used with the GNSS Toolbox library
developed by Jacques Beilin (ENSG) and used for verification of specific parts of the code.
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This chapter presents the different precise products available in real-time and how to retrieve

them. Details are given on the RTCM protocol, which is used by the IGS-RTS to send the precise
corrections. Finally, the implementation of the real-time streams inside the GeolocPVT application
is explained.

2.1 Real-time precise products

2.1.1 Ultra-rapid products

Precise products are diffused by the IGS (International GNSS Service), with different accuracy
depending on the observation date. Final products, which give the best accuracy (about 2.5cm
on orbits/75ps on satellite clocks), are only available after 15 days. For real-time purposes, earlier
products need to be used, like ultra-rapid products. They are predicted, meaning they are based on
previous observations and not the current ones, and are available in real-time but less precise (about
5cm/3ns).

Those products are available through the FTP servers of the IGS network in SP3 format. Files
contain a position for each satellite of the constellation assigned to a timestamp in UTC, with a
sampling rate of 15min. When one wants to compute the satellites’ positions for a specific time, a
10th-order polynomial interpolation function is usually applied [2]. While this might work correctly for
satellite positions, the interpolation process is not recommended for satellite clocks, also contained
in ultra-rapid SP3 file, but with a sampling rate of 15min as well. According to ESA [2], products
with a low sampling rate (i.e., higher than 30s) should not be interpolated because their evolution
corresponds to a random walk process. This highlights an issue in using IGS ultra-rapid products for
real-time PPP, since precise clocks estimation is mandatory for precise positioning.

Finally, it is essential to notice that those files are only available for GPS satellites and no other
constellations on the IGS servers. As mentioned before, multiple constellation is the key for PPP,
especially in constrained environments like urban canyon, which is where a smartphone is most likely
to operate. This emphasizes another problem with ultra-rapid products, which is their availability
for all constellations.

2.1.2 Real-Time Service and RTCM protocol

Since 2001 [23], IGS has also been developing another service called Real-Time Service (RTS).
Its goal is to diffuse real-time products to users to perform real-time positioning. Joining the RTCM,
they developed the State Space Representation (SSR) standard, enabling the diffusion of orbits and
clocks corrections through the Internet using bytes streams.

The RTCM 1 is an international non profit scientific organization which develop standards for
maritime radio-navigation and radio-communication systems. The RTCM protocol includes stan-
dards for encoding and sending DGNSS data. The protocol divides the data in several messages,
which can be identified by an ID, representing what the message contents is. At first developed
for GPS/GLONASS only, the latest version (10403.3) developed in 2016 now contains messages

1. http://www.rtcm.org/about.html

http://www.rtcm.org/about.html
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for GALILEO, BEIDOU and QZSS systems. For example, GPS constellation corrections are in the
messages 1057 to 1062 [38].

— Message 1057 - SSR GPS Orbit Correction
— Message 1058 - SSR GPS Clock Correction
— Message 1059 - GPS Code Bias
— Message 1060 - SSR GPS Combined Orbit and Clock Corrections
— Message 1061 - SSR GPS URA
— Message 1062 - SSR GPS High Rate Clock Correction
Similar messages with different IDs can be found for other constellations: GLONASS (1063-

1068), GALILEO (1240-1245), QZSS (1246-1251) and BDS (1258-1263). The RTCM standards
version 10403.3 [37] details the contents of each message. For precise positioning, we are interested
in the broadcast ephemeris containing the orbits/clocks parameters :

— Message 1019 - GPS broadcast ephemeris;
— Message 1042 - BEIDOU broadcast ephemeris;
— Message 1045 - GALILEO broadcast ephemeris;
— Message 1060 - GPS precise corrections;
— Message 1243 - GALILEO precise corrections;
— Message 1249 - BEIDOU precise corrections;
The IGS-RTS requires special access to retrieve those streams, and as for now, only research

purposes projects are granted access. For this study, parallel access to three streams was granted to
the IGS server “rt.igs.org".

The IGS-RTS offers different server to be connected to, each one offering a list of mount points
(i.e., casters). Each of those corresponds either to a permanent base site or a processing center. They
will send certain types of message, with specific rates, depending on the mount points specifications.
It means that not all streams contain the same messages, therefore not all constellations either.
Using the BKG software "BKG NTRIP Client" or BNC [5], an open sourced NTRIP software, one
can look into the content of the stream sent by each point, to find the most suitable stream to
receive the desired corrections.

2.1.3 Benefits of the IGS-RTS

By using this service, it becomes possible to retrieve the orbits and clocks information of all
systems, depending on which mount points the device is connected to. According to Wang et al.[42],
the mount point CLK93 from the CNES (Centre National d’Etude Spatiale, France) is one of the
few mount point sending corrections for GPS, GLONASS, GALILEO and BEIDOU constellations. It
has been verified with the introduction of these streams in the GeolocPVT app, to retrieve GPS and
GALILEO corrections using this mount point.

Another benefit of using the streams corrections is the precision obtained for satellite positions
and clocks. IGS-RTS products are as accurate as the predicted half of the ultra-rapid products [8]
while offering satellite clocks corrections with a much higher sampling rate. It depends on the mount
points specifications. A five seconds rate is standard for clocks corrections to avoid inaccuracies
inherited with longer interpolation [23]. This is a considerable improvement compared to the ultra-
rapid products, satellites clocks being one of the most significant error source in positioning that is
not canceled out in PPP as it would be in DGNSS.

Note that we will focus only on the integration of those streams in the app and how precise
corrections can be extracted from the RTCM streams. However, I will not talk about the Internet
data consumption using those streams lead to, which is a problem I also studied. To answer this,
I wrote an article in June to be published at the WNPC 2019 conference, which can be found in
Appendix C of this report.
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2.2 Computation of the precise orbits and clocks

2.2.1 Satellites coordinates from broadcast ephemeris

The same algorithm that one uses to compute satellite positions from the navigation message can
be used here with those messages; details can be found in the appendix C.2 of the ESA open book
[2]. The computations of the satellite’s coordinates using broadcast elements were already coded by
[35] in the GeolocPVT application when I arrived, since the navigation data was retrieved from the
navigation message inside the app. However, I had to adapt the code so that GALILEO satellites
could be computed too and that orbital parameters could also be set up from the streams and not
only from navigation messages.

Figure 2.1 – GNSS satellites keplerian orbital elements [2]

2.2.2 Applying the corrections

Precise corrections to the satellite orbits and clocks are given in the satellite body referential and
are designed to be applied directly on the positions computed by the broadcast ephemeris.

Figure 2.2 – Orbit corrections applied to satellite coordinates [38].

Similar to the one from navigation message, streamed ephemeris and corrections are marked
by an ID called Issue of Data (IoD). This information is particularly important when one wants to
apply the streamed correction to satellite positions. Indeed, IoDs need to be the same between the
ephemeris and the correction message for the corrections to make sense and improve the accuracy
of the satellite’s position. To apply the received corrections, the reference frame first needs to be
changed. Orbital corrections are given in satellite body frame (eradial, ealong, ecross) and need to be
rotated to ECEF reference frame, where our satellites coordinates are. The following equations are
extracted from [38].
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Xorbit = Xbroadcast − δX (2.1)

δX =
[
eradial ealong ecross

]
δO (2.2)

Where:
δX is the corrections in the ECEF reference frame;
Xbroadcast is the satellite coordinates in the ECEF frame computed from the broadcast;

Note that the coordinates and the corrections are directly related to the position of the ionosphere-
free combination phase center of the satellite’s antenna.

ealong = ṙ

|ṙ|
ecros = r × ṙ

|r × ṙ|
eradial = ealong × ecross (2.3)

Once the satellite positions are computed and the corrections are applied, precise coordinates are
obtained and can then be used in the rest of the computations.

2.3 Implementation in the application
Regarding the implementation of stream retrieval in the app, this is done through the Java

library GoGPS, an open-sourced code licensed under the GPL and available on Github 2. It is an
adaptation of a MATLAB version developed by the Geomatics Laboratory of Politecnico di Milano,
Como campus (Italy), under the supervision of Dr. Mirko Reguzzoni, as a Master thesis project
(Dominioni, Teruzzi). This code was developed for positioning using GPS only. Even if it is not
designed as an Android app, it can be used as a library, since our app GeolocPVT is developed in
Java too. For that, I transformed the Java library into an Android library (or module) using Android
Studio. It gives us access to an extensive toolbox with a lot of already coded functions, including
the ones to connect to a mount point sending RTCM streams and decode them. The only problem
is that the functions need to be generalized and adapt for all the wanted systems, not only GPS, and
in our case it means for GALILEO too.

The first part of my work after branching the library and add it to the GeolocPVT code was to
understand the GoGPS code, which does not include any external documentation, how to use it and
improve it. After a successful connection to a mount point, decoding capacities were enhanced to
parse all the wanted RTCM messages which were not present in GoGPS.

2.3.1 Connection to mount points

The main benefit of GoGPS in our case is the handling of the connections to the servers. This
is performed by the RTCM3Client class. GoGPS contains an interface called StreamEventListener,
which can be implemented into a class for event handling of a new stream being received. However,
even if the classes are all set up, no working example was found in the library. A new class needs to
be created to make use of those different objects. Since we want the streams to be retrieved in the
background, this custom class will need to create a new thread in the application. RTCMRunnable
class is therefore created, implementing the Runnable interface of Java, for thread handling. We
also implement the StreamEventListener interface in our own class called StreamEphmerisHandler.
Then everything is wrapped inside a class called Streams.

The creation of the connection is executed in this order: once the app is started, the application
will try to connect to the streams given the parameters set up in the user options. By instantiating
a new object of the Streams class, it will create a thread for each stream we want to connect to,
meaning a new RTCMRunnable object for each stream. When a RTCMRunnable object is created,

2. https://github.com/goGPS-Project/goGPS_Java

https://github.com/goGPS-Project/goGPS_Java
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it will create a new RTCM3Client object and fill it with the parameters of the caster (e.g., server
address, credentials, mount point). To this RTCM3Client will be attached a StreamEphmerisHandler,
a listener which will be called each time a new stream is received and will handle its parsing. Contents
will be saved in the appropriate classes (see section 2.3.2).

Figure 2.3 – Diagram summarizing the creation of a new stream handler.
Gray blocs represent GoGPS native classes, enhanced for new message handling. White blocs are

newly created classes for GeolocLib.

The table 2.1 shows the mount point’s parameters used during the development. We are in-
terested in retrieving the ephemerises and the corrections to it. We will connect to two mount
points of the IGS-RTS: "RTCM3EPH" for the ephemerises and "CLK93" for the corrections. Note
that the "RTCM3EPH" was not available to the server at the beginning of this internship and only
appeared in June in the mount points server’s list. Before that, I used a stream from Toulouse
called "TLSG00FRA0", which was sending only the satellites in view in Toulouse and with a longer
sending rate. It would usually take 30 seconds before the app received all the satellites, compared to
5 seconds with the new "RTCM3EPH" mount point.

Mountpoints Host Port Organization Messages used
RTCM3EPH rt.igs.org 2101 BKG 1019,1042,1045

CLK93 rt.igs.org 2101 CNES 1060,1243,1249,1059,1242,1260

Table 2.1 – Mount points used and the messages used from them.

2.3.2 Decoding of the streams

Once a stream is retrieved, it is in binary format and needs to be decoded before being usable.
From looking at the GoGPS source code, we can see that GoGPS was not developed for decoding
of ephemeris data, but rather to receive observation data from distances bases and log it. In the
RTCM protocol, observation data is sent in messages 1004 (GPS) and 1012 (GLONASS), which
explain why only those functions are coded in GoGPS. Since we are interested in other messages
(see section 2.1.2), we need to implement the decoding class that goes with it. The encoding of
the message is explained in the RTCM standards [37], the same way the GPS and GALILEO ICD’s
describe how is encoded the navigation message. It follows the underlying logic of electronics’ bytes
decoding, which is not interesting to explain in-depth here. For detailed information, please refer
to the following reference [40]. It is important to note that a large part of the RTCM’s messages
decoding is already implemented in the well-known RTKLIB C/C++ open-source library. Since
C/C++ code can be wrapped in Java and Android apps, I first thought about wrapping the RTKLIB
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library in GeolocPVT’s Java code, to use its decoding capacities at first, but also for later purposes
when PPP functions will be developed. RTKLIB already had all the PPP functions wanted for the
app and using them would allow interoperability of our code and certitude that our computations
are correct, since the RTKLIB is developed and tested by a large community around the world.
Yet, wrapping and compilation of C/C++ sources in Android Studio is not trivial. Therefore, after
encountering diverse compilation issues, I decided that the integration of RTKLIB would require too
much time and instead needed functions could be re-coded in Java directly, expanding the GoGPS
library. Thus, using RTCM standards [37] and the RTKLIB source code 3, the decoding functions
were coded in the app and add to the GoGPS library.

GoGPS handles the decoding of the messages by creating a new class for each message, all
implementing the interface Decode and then linking the message number to the right class in a
Map 4 object defined inside the RTCM3Client class. When a message is received, it will decode
the header, compare this number to the keys inside the Map, and use the proper decoding function
for this message. In total, nine classes were added throughout the internship, three for each GNSS
constellations used (GPS, GALILEO, BEIDOU). The ephemeris precise corrections’ messages 1060,
1043 and 1069 are all encoded the same way, with a few changes depending on the length of the
header for each constellation. However, the messages 1019, 1042, and 1045 related to ephemeris
data have differences in their contents. The RTCM standards manual is then mandatory to account
for these few changes in encoding [37]. To verify if the streams were decoded correctly, I used
the program SNIP 5 and also the broadcast ephemeris logged by the IGS. The last three messages
concerns Differential Code Bias (DCB) corrections and will be explained later in section 4.2.2.

Decoded ephemeris data is placed inside the class GNSSEphemeris and corrections data are
placed inside the GNSSEphmerisCorrections, containing several PreciseCorrection object, one for
each corrected satellites. Since every new stream event is happening on his own, depending on
the mount point specifications, nothing is synchronized, and nothing needs to be until the position
computation. This is why I decided to implement every connection to mount point in its own thread,
as we explained in the previous section. Every part of the app is designed that way, and the only thing
linking them all together is the new raw GNSS measurement event, which happens at a 1Hz rate. It
is this event that will launch the computation of a new solution and synchronizes the data retrieve
from streams with the raw GNSS measurement. This is why every new stream received we will
replace the previous stream data with the new stream data, discarding the previous data because it is
inevitably outdated and not relevant anymore in our current epoch. This way, we do not accumulate
data, and we do not have to synchronize the computations, only the relevant data will be there
for the next new GNSS measurement event. When this event comes, we simply "request" the last
received data which is contained in our Stream object in our MainActivity thread and computed the
current position of the user with it, computing the satellites current position and applying the precise
correction at this moment only and not before.

3. https://github.com/tomojitakasu/RTKLIB
4. A Map object in Java associate a "key" to a "value". Here the key is the message number. The value is an

empty instance of the correct class.
5. https://www.use-snip.com/

https://github.com/tomojitakasu/RTKLIB
https://www.use-snip.com/
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Figure 2.4 – Diagram representing the app’s architecture.

2.3.3 Precise corrections verification

The app’s module used for computation of the satellite coordinates using the ephemeris parame-
ters available in navigation messages or RTCM streams was developed during the previous internship
[35] and already coded when I arrived. However, by reading the report of this internship, I found that
satellite coordinates have not been adequately checked, since only verified up to the first decimal of
decimal degrees using the website http://in-the-sky.org. Because I was looking for a possible
explanation for the offset found in the computations’ results (see section 3.4), I decided to redo this
positioning module and properly verify it, using for reference the Python GNSS Toolbox developed
by Jacques Beilin. I designed a unit test in the GeolocPVT code so that given ephemeris parameters
and specific time, I could compare the results to one computed by the Python library. This way,
I confirmed that the new version of the module correctly calculated the satellite coordinates. The
offset problem was not solved in the user position, but at least this part of the code is now verified.

For verification of the precise corrections, the SNIP software was used, which can display the
contents of a RTCM stream. Correct decoding of the binary are therefore verifies. The second
test performed was checking the norm of the corrections. As we said earlier, precise corrections are
given in the satellite body-frame and need to be converted to the ECEF frame to be applied on the
satellite coordinates. By verifying that the norm of the correction vector is the same after the change
of system, we make sure that the precise corrections obtained in ECEF are correct. For verification
of the precise satellite coordinates, I compared the satellites positions computed by the phone in
real-time to the SP3 products of the IGS. For this, the Python GNSS Toolbox was used again, which
can read SP3 files and interpolates between the positions written in the files. The results are shown
in figure 2.5, and we can see that significant errors are still present in it. However, looking at the
norm of these errors in figure 2.6, it seems to be constant. A possible explanation for these large
errors in satellite positioning could be due to the computation of emission time. Indeed, we have
seen before that the algorithm has been verified and work correctly, but the difference between the
test I did and the real-time computations performed on the phone is which emission time is inputted
in the algorithm. This is why I think this error is time-related. As said in section 1.3.1, retrieving
the exact reception time is not trivial, and several offsets need to be accounted for. However, this
time is also needed to compute the corrections received from the streams. After verification of the

http://in-the-sky.org
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emission time computation, I could not find the error in the code.

Figure 2.5 – Differences between the satellite’s coordinates from ultra rapids orbits and RTCM
corrections.

Figure 2.6 – Differences between the norm of the satellite’s coordinate vector from ultra rapids orbits
and RTCM corrections.

In summary, satellite position computations from orbital parameters and precise corrections re-
ceived from the stream have been correctly verified. However, an error up to 1 meter on the satellites
positions still exist. After some verification, everything seems to be linked to an error in the emission
time computations. While this is not very important for SPP computations, it might be the reason
for the offset I found in the computations presented in section 3.4. When the PPP algorithm is
developed in the phone, attention should be given on this error, as the satellites positions should be
precise at the centimeter-level.
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This chapter presents the Standard Point Positioning technique and the modeling of GNSS
observations used in the app’s computations. The Kalman filter model is also detailed for static and
dynamic positioning.

3.1 Technique definition
Standard Point Positioning (SPP) is the most basic positioning technique. It is a trilateration

method, relying on one receiver’s observations only, using the pseudorange measurements to compute
the user coordinates and receiver clock bias. All errors in the signals are either negated by signal
combination using multiple frequency or modeled. Since it does not need to estimate the phase
measurement ambiguity, it is easier to implement than PPP but give a worse precision. Yet it is a
mandatory step since it allow to assess the receiver capacities and to set up several other important
part of our algorithm, like the cycle and multipath detection algorithms, and the C/N0-Elevation
weighting, which will be useful for our PPP computations.

3.1.1 Measurements modeling

Pseudoranges and phases measurements can be modeled as followed [2]:

P jf = ρj + c · (δtr − δtj) + τ jiono + τ jtropo + ε

Φj
f = ρj + c · (δtr − δtj)− τ jiono + τ jtropo + λf ·N j

f + ε
(3.1)

Where:
P jf is the pseudorange measurement of the jth satellite of frequency f ;
Φj
f is the phase measurement of the jth satellite of frequency f (Φf [m] = λf · φf [cycle]);

ρj is the geometric distance between the satellite and the receiver coordinates;
c is the speed of light constant, e.g. c = 299792458 m/s
δtr is the receiver clock error from the GNSS time scale;
δtj is the satellite clock error from the GNSS time scale;
τ jiono is the error due to propagation in the ionosphere layer;
τ jtropo is the error due to propagation in the troposphere layer;
N j
f is the carrier-phase ambiguity of the carrier signal with frequency f ;

ε account for several errors, including multipath and noise.

3.1.2 Carrier-phase smoothing of pseudorange

The pseudoranges measurements are absolute distance measurements that allow us to compute
a position easily using a trilateration algorithm (with least square for example). However, they are
noisy measurements that lead to significant errors in our computations, leading to jumps between a
position computed at epoch k compared to the one computed at epoch k−1 if no filtering algorithm
is used (e.g., simple Weighted Least Square). On the contrary, the carrier phase measurements are
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less noisy but ambiguous, meaning that we need to resolve the carrier-phase ambiguity if we want
to use it as an absolute distance measurement. This process is called ambiguity estimation; it is the
difference between a SPP and a PPP algorithm and will be discussed in chapter 5. With a geodesic-
grade antenna and if no cycle slip occurs, the noise of phase measurements can be estimated as
σΦ = 0.001 m, whereas pseudorange measurements precision are only about σΦ = 3 m. Figure 3.1
represents the pseudorange and phase rate between two epochs. They are computed by temporal
differentiation of the measurements to compare them. It clearly shows the precision of the phase
compare to the pseudorange.

Figure 3.1 – Pseudorange and phase rate comparison.

A carrier-phase smoothing algorithm is a process that takes advantage of the absolute character
of pseudoranges and the carrier-phase measurement precision by merging the two measurements
along time. Using equation 3.2 [2], it is possible to reduce the noise of pseudorange measurements,
giving more and more weight to the phase measurement updates along time.

P̂ jk = 1
n
· P jk + n− 1

n

(
P̂ jk−1 + (Φj

k − Φj
k−1)

)
if k < N, n = k

else, n = N
(3.2)

This technique is well-known and was presented again at the GSA workshop I attended, in order
to improve the pseudorange quality that are particularly noisier on smartphones due to the bad quality
of the antenna (see section 5.2.4). Since it showed good results, I decided to implement it inside
GeolocPVT.

After a short convergence time, depending on the weight given to the phase measurements and
the integration time, the noise of the measurement is significantly reduced, leading to a more precise
positioning. This smoothing can be performed on L1 and L5 measurements separately, but the
ionosphere effects can lead to divergence in the solution if measurements are integrated for too long.
Since we are computing the L3 (ionosphere-free) combination, we can perform smoothing directly
on those measurements instead, to avoid this divergence effect. Another way is to compute the
Divergence-Free Smoother since we have dual-frequency measurements available. However, this last
solution is more useful for static receivers with observations time longer than 12 hours [2], which is
not our case since we are dealing with observations time smaller than 1 hour. Assumption can be
made that this phenomenon does not impact us.
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Figure 3.2 – Triple differences of pseudoranges for L1, L5 and L3 measurements, compare to their
smoothed version.

Raw pseudorange Smoothed pseudorange
Statistics L1 [m] L5 [m] L3 [m] L1 [m] L5 [m] L3 [m]

Standard deviation (1 σ) 2.791 1.936 5.453 0.223 0.151 0.395

Table 3.1 – Statistics for comparison of single epoch positioning and kalman filter in Static mode.

Figure 3.2 shows double time-differenced of pseudorange measurements. It allows keeping just the
noise of the measurements, with no trends in the data for easy analysis of the algorithm performances.
Note that the graph’s scale containing the smoothed pseudoranges had to be adapted because of
the good precision of the pseudoranges now. We can also notice than in the raw pseudorange graph
(left), L1, and L5 measurements have a different precision, L5 measurements tend to be less noisy
and more resilient to multipath [36].

3.1.3 Time-Differenced Carrier-Phase

Another way to use the carrier-phases measurements without resolution of the ambiguity is for user
velocity estimation. Using a precise velocity estimation, we can apply constraints on our trajectory
and our positions computed from our pseudoranges.

In the Google API, multiple measurements can be retrieved at each epoch, like phase or doppler
measurements. Both can be used for velocity estimation, but Doppler is less precise than phase
measurement [13]. This is why if we decide to use the phase measurements, it is not interesting to use
the Doppler measurements. Therefore it has been decided to not retrieve the Doppler measurements
for computations in the app. The technique associated with the phase measurements is called Time
Differenced Carrier Phase (TDCP). This technique is well-known in the Geoloc laboratory and is
used in other positioning algorithm they have, which led me to develop it inside GeolocPVT, where
I wanted to use phase measurements in SPP computations. However, while doing researches on this
technique, I found that the integration of TDCP for smartphone measurements has been performed
in a study from Zhu et al. [26] published at the beginning of this year 2019. It comforted me in this
decision to use TDCP inside GeolocPVT, since the study’s results were great.

Time difference between phase measurements at epoch k − 1 and k can be modeled as follows

∆Φj = ρ̇j + c ·∆δṫr − c ·∆δṫj + ∆δuj −∆τ jiono + ∆τ jtropo + ε∆Φj (3.3)

Since we are differentiating the phase measurements, we can assume here that the errors ∆δṫj ,
∆τ jiono and ∆τ jtropo can be neglected, since our measurements rate is 1 Hz [13] [26]. We can therefore
simplify the equation 3.3 and linearized it as equation 3.4 [26].



42 Standard Point Positioning

∆Φj −∆D + ∆g = −ek ·∆ru + c ·∆δṫr + ε (3.4)

Where e is the user-satellite line of sight defined in equation 3.5

ej = ur − us

||ur − us||
= ur − us

ρ
(3.5)

∆g = ek · ru,k−1 − ek−1 · ru,j−1 (3.6)

∆D = ek · rs,k − ek−1 · rs,j−1 (3.7)

This part relates to the dynamic positioning algorithm, different from the static positioning first
set up in the app. It means that the static algorithm does not make use of the TDCP and does not
estimate velocity. It only uses the phase measurements for pseudoranges smoothing. See section 4.3
for the dynamic algorithm.

3.2 Corrections

3.2.1 Troposphere model

Two tropospheric models were implemented inside the GeolocPVT algorithm: the Saastamoinen
model, based on averaged pressure, humidity and temperature values, and the model implemented
in the GIPSY-OASIS II software, with an estimation of the wet part of the atmosphere as one of our
system parameters.

The Saastamoinen model was used here for SPP computations. For integration of the model, I
used the open-source code from the GNSS Compare application, developed by The Galfins in 2018
as part of an ESA competition [14]. Details on the equations can be found in the ESA Navipedia
website 1 [10].

The other model does not require any atmospheric data either and is much more precise since it
is based on the actual observations of the receiver. It was also developed but is more interesting for
PPP purposes and not SPP [2]. Therefore, this model and its development are explained in chapter
5.

3.2.2 Ionosphere model

Correction of the ionosphere delays is essential for precise positioning and can be achieved either
by modeling or combination of signals. The effects of the ionosphere are related to the signal
frequency. Therefore when multiple frequencies are available on the receiver, this delay is usually
canceled by creating the ionosphere-free combination.

Another way is to use ionosphere models, which are less precise but work with mono-frequency
receivers, like the Klobuchar model. Parameters for this model can usually be found in the navigation
messages of the signals. Details on how to compute this model are given in [2], p.116-121. As said
in section 1.4.2, only GPS navigation messages are received, but the ionospheric parameters inside
can be used for other systems (i.e., GALILEO and BEIDOU). Another way would be to retrieve those
parameters from the RTCM streams, as they are sent under message 1264.

3.2.3 Signal combination

Because we are working with dual-frequency, it is possible to mitigate the ionosphere error by
combining signals with different frequencies coming from the same satellite. This combination is
called the "ionosphere-free" combination, also referred as L3.

1. https://gssc.esa.int/navipedia/index.php/Galileo_Tropospheric_Correction_Model

https://gssc.esa.int/navipedia/index.php/Galileo_Tropospheric_Correction_Model
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P j3 = f2
L1

f2
L1 − f2

L5
· P jL1 −

f2
L1

f2
L1 − f2

L5
· P jL5

Φj
3 = f2

L1
f2
L1 − f2

L5
· Φj

L1 −
f2
L1

f2
L1 − f2

L5
· Φj

L5

(3.8)

Equation 3.1 then become

P j3 = ρj + c · (δtr − δtj) + τ jtropo + ε

Φj
3 = ρj + c · (δtr − δtj) + τ jtropo +Bj

3 + λ3 · ωj + ε
(3.9)

3.2.4 Measurements weighting

In GNSS positioning, measurements weighting is usually correlated to the satellite elevation, since
higher satellites are less likely to have large errors due to the atmospheric delays. Other models exist,
using the C/n0 or Signal-to-Noise Ratio (SNR) and is usually preferred for challenging environments,
e.g., urban canyons. Mixed models also exist, with taking into account if the satellite is in sight of the
receiver or not [45]. During the workshop in Prague about Android GNSS measurements, weighting
of measurements using C/n0 values has shown to be the best one, as, in contrary to Geodesic grade
antenna, quality of measurements are not correlated at all to the elevation of the satellite (see section
5.2.4). Therefore, I decided to integrate a model based on C/n0 values rather than elevation inside
the application. The model most used in the studies [45, 26] is developed in equation 3.10.

σP i = a+ b · 10
−C/n0i

10 (3.10)

Where a and b are coefficients depending on the environment. For open-sky condition, these values
are usually set to: a = 10m2 and b = 1502m2 [26]. Ways exist to compute the appropriate values
depending on the errors left in pseudoranges after correction [45] but demand more computation
resources and time. Instead, some empirical testing of sets of values have been performed, but these
turned out to be the best.The weighting matrix R can be built for each measurement using the σP j .

R−1 =


(σ1
P )2 0

. . .

0 (σnP )2


nsat×nsat

(3.11)

3.3 Weighted Least Square Estimation
To solve this system, an excellent method to begin with is a simple Least Square Estimation. Our

system being non-linear, it needs to be linearized, and a priori values need to be given. Note that for
all developed algorithm here (least square or Kalman filter), we assume that at least one satellite of
the three constellations (GPS, GALILEO, BEIDOU) is received in every epoch, and that inter-system
time offset (GXTO) can be correctly estimated. If one constellation was missing, it would make the
system unsolvable unless the corresponding time offset parameter is removed from the estimation.
We are only developing here the system in its most complete form.

3.3.1 Linear model

The equation 3.1 can be linearized and put in a matrix format as Y = HX, where H is our
observation (or design) matrix, Y is the observation vector and X our state or parameter vector. For
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linearization, we proceed by doing Taylor’s development on a small state perturbation. This is why
we estimate dx, dy, dz rather than x, y, z directly. We need to add some other parameters to our
model, referring to the inter-system time offset between GPS and GALILEO (GGTO) and between
GPS and BEIDOU (GBTO). This offset exists because two systems are not perfectly synchronized
with each other. While it is possible to predict this value with information contained in the navigation
message [24], it is also possible to estimate it in our computations at the cost of one observation.
This also means that if only one satellite from another constellation is visible, adding it to the system
will not increase the redundancy of our system. Therefore at least two satellites of the other system
need to be present in the observation. Since we are not receiving GALILEO nor BEIDOU navigation
messages, we choose the second method and add two parameters to be estimated in our state vector:
GGTO and GBTO.

X =
[
dx dy dz c · dtr c ·GGTO c ·GBTO

]T
(3.12)

Y =



...
P j,GPSi − ρj,GPS − c · δtr + c · δtj,GPS

...
P j,GALi − ρj,GAL − c · δtr + c · δtj,GAL − c ·GGTO

...
P j,BDSi − ρj,BDS − c · δtr + c · δtj,BDS − c ·GBTO

...


n×1

(3.13)

H =



...
...

...
...

...
...

xr−xj,GP S

ρj,GP S
yr−yj,GP S

ρj,GP S
zr−zj,GP S

ρj,GP S 1 0 0
...

...
...

...
...

...
xr−xj,GAL

ρj,GAL
yr−yj,GAL

ρj,GAL
zr−zj,GAL

ρj,GAL 1 1 0
...

...
...

...
...

...
xr−xj,BDS

ρj,BDS
yr−yj,BDS

ρj,BDS
zr−zj,BDS

ρj,BDS 1 0 1
...

...
...

...
...

...


n×p

(3.14)

Where n is the number of observations, and p is the number of parameters. Starting from an
approximate solution, we can estimate the solution using the following equations.

X0 =
[
x0 y0 z0 0 0 0

]T
(3.15)

The normal matrix N is computed and the system is solved at epoch k, with the residual vector
v been extracted

Nk = GTkRkGk C = GTkRkYk (3.16)

X̂k = X0 +N−1
k · Ck v̂k = AkX̂k − Yk (3.17)

Several iterations might be needed since the system has been linearized, depending on how far
from the real values the a priori vector X0 is. The stopping criteria here is the change of dX between
two iterations. If the norm of that change is below 10e−4 or if we are doing more than ten iterations,
we stop the loop. We are not using any previous observations and only perform a one-epoch solution.
However, since we are placing ourselves into a static mode at the beginning of the positioning, we
could start to accumulate data by changing our least square model into a recursive model.
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3.3.2 Recursive Least Square

Recursive least square is a mathematical model where information from the solution computed
in the previous epoch k − 1 is reused in the current epoch k. It can be seen as a Kalman filter with
no prediction model. It is therefore simpler to set up and can afterward be upgraded into a Kalman
filter by adding the prediction part. The equations to set up a recursive system are defined in [11].
Our solution update is described in equation 3.18, where k refers to the current epoch.

X̂k = X̂k−1 +Kk · γm (3.18)

We define here what we will be later our Kalman gain K and our innovation vector γ (3.20).

Kk = P−1
k ATkR

−1
k (3.19)

γk = ỹk − ŷk
ỹk = AX̂k ŷk = AX̂k−1

(3.20)

P−1 matrix is equal to the normal matrix defined in equation 3.16, P−1 = N . It will contain
all the information of our previous epochs, getting incremented each time new measurements are
coming (3.21).

P−1
k = P−1

k−1 +ATkR
−1
k Ak (3.21)

The Recursive Least Square technique is presented here because it was developed in the app at
first. However, once the Kalman filter was integrated and correctly tuned, it became less relevant.
Therefore, it will not be shown in the result, and the accumulation of data among epochs will be left
to the Kalman filter chapter (chapter 4).

3.4 Results analysis
Starting from the solution obtained from the default state of the app when I first arrived, figure

3.3 represents a single epoch solution, with no accumulation of data between epochs. We can see
a massive offset in the East direction, with a mean value of 26 m and a small offset in the north
direction of 5m. The up direction also contains a large offset with a mean value of 26 m. Regarding
the precision, the position solution have a significant dilution in horizontal.

Figure 3.3 – Initial solution of the app, where large offset can be seen.

Because we are developing an algorithm in real-time here, it is difficult to compare different
solutions computed from the phone, with different corrections, on the same dataset. For more
coherent comparison, the results presented in this section are extracted from the same dataset and
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have been "replayed" in Android Studio by reading the observations outputted by the app in our
custom file format. That way, we can more easily change the corrections applied and see their
impact on the solution. The date written in the graph is the acquisition date, the positions been
computed with the last version of the code available today. Every position is tranformed to local
ENU frame, the reference being the pillar’s true position surveyed using a geodesic grade receiver.

3.4.1 Mono-constellation

Analyzing the results presented in figure 3.3, I found that the east offset was similar to one offset
describe in ESA book [2] about the earth rotation correction. Indeed here we are computing the
satellite position in the reference frame ECEF. This reference frame rotates with the Earth, meaning
we need to compute the satellites’ positions at reception time for our solution to be correct. Because
the signals take out 0.07 seconds on average to go from the satellites to the Earth, a rotation needs
to be applied on the satellites position computed at emission time, depending on the transmission
time and the Earth rotation rate. If not applied, the position will suffer a 25 m meter offset to the
East. When I looked at the code from the application, the satellites’ positions were not corrected
from this error, explaining the east offset. As we can see in figure 3.4, we apply this correction,
reducing the offset greatly in the east.

Figure 3.4 – Single epoch solution, with and without the earth rotation correction.

Note that at this point, our solution should be centered on the reference point, even with a bad
precision. I tried different solutions to take care of this offset (see section 4.2.2), although I did not
manage to remove it completely. It is a known issue in the code, which should be looked over in the
future development of the app. For the rest of this section results, we will not discuss more about
this inaccuracy issue and focus on the precision of the results.

In this solution, we are only using GPS satellites. We can now add GALILEO and BEIDOU
satellites and see the effects on the solution.

3.4.2 Multi-constellation and multi-frequencies

Since we have integrated RTCM streams, it is possible to compute a multi-constellation solution.
First, the GALILEO signals are added because the system is based on the same design as the GPS
constellation. Indeed computation of satellite position is similar in GPS and GALILEO, contrary to
GLONASS. The same goes for BEIDOU, which is why its integration also have been performed in
the app. The goal is to increase our system redundancy as much as possible. In figure 3.5, we see
our accuracy is better than with the GPS only solution, especially for all three components east,
north, and up. We have more redundancy in our computations indeed. Statistics are displayed in
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table 3.2 and confirm that the overall accuracy of the solution is better with the GALILEO satellites,
with horizontal RMS going from nearly 8 meters to 4.5 meters. However, overall precision tends to
stay the same with or without GALILEO constellation.

Figure 3.5 – Single epoch solution, with GPS and GALILEO constellations.

GPS only GPS & GALILEO
Statistics East [m] North [m] Up [m] East [m] North [m] Up [m]
Mean -6.440 8.237 -7.479 -1.225 4.817 0.626

Standard deviation (1 σ) 3.226 3.542 7.697 3.056 3.615 7.326
RMS (1 σ) 7.203 8.967 10.733 3.292 6.023 7.353

RMS 2D (1 σ) 11.502 - 6.864 -

Table 3.2 – Statistics for comparison of GPS and GPS & GALILEO solutions.

Figure 3.6 – Single epoch solution, using both L1 and L5 measurements and smoothing the pseudo-
ranges.
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Figure 3.7 – Single epoch solution, using both L1 and L5 measurements and smoothing the pseudo-
ranges (ENU).

As for now, we have only been using L1 measurements. However, now that we have the GALILEO
satellites, which are all sending L5 signals, we can try to put those measurements into the computa-
tions. First, the L1 and L5 are added as separate measurements, increasing the redundancy of our
system. In figure 3.6 and 3.7, we are adding the L5 measurements to the solution, and we are also
performing the pseudorange smoothing described in section 3.1.2. Statistic of those computations
are available in table 3.3. First of all, adding the L5 measurements improve our positioning signif-
icantly, as we add more measurement to the system. Moreover, when the smoothing is applied to
the measurement, our solution’s imprecision due to the noise of the pseudorange is greatly reduced.
It results in an improved precision for the horizontal components. However, applying this smoothing
seems to impact the precision of the up component greatly, with its RMS value going from 5 to 15
meters. The origin of this large inaccuracy is still unknown.

L1 only L1 & L5 L1 & L5 (Smoothed)
Statistics E [m] N [m] U [m] E [m] N [m] U [m] E [m] N [m] U [m]
Mean -1.225 4.817 0.626 -0.350 4.862 0.919 -1.209 4.523 -14.571

Standard deviation (1 σ) 3.056 3.615 7.326 2.331 2.999 5.726 1.690 1.166 5.593
RMS (1 σ) 3.292 6.023 7.353 2.357 5.712 5.799 2.077 4.671 15.608

RMS 2D (1 σ) 6.864 - 6.180 - 5.112 -

Table 3.3 – Statistics for comparison of L1 only and L1/L5 solutions.
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Another way to use the L1 and L5 measurements is to compute the ionosphere-free combination.
In figure 3.9 and 3.8, the ionosphere-free combination is compared to the L1/L5 solution. We see
that it largely increase the noise in our position. Two factors can explain this:

1. The ionosphere-free combination has an increased noise because combining the noise of
the two measurements. This leads to a less precise solution but with a better accuracy in
theory. One solution for this is to use a smoothing algorithm we detailed in section 3.1.2 and
represented in the graphs 3.9 and 3.8, but this is not enough.

2. The geometry of our solution, with our system becoming less redundant. Since we are
only using satellites from which we receive both frequencies. Note that the ionosphere-free
combination was originally performed with L1/L2 measurements, but we are doing it here
with L1/L5. While the physic behind is the same, L5 measurements are harder to get than
L2 measurements since only 12 GPS satellites are sending it [33]. It means that only 4-5
satellites can be used in an open sky environment, which is barely enough to compute a
solution for our system. Thankfully, all GALILEO satellites send on this frequency, and with
22 satellites operational, our system becomes redundant as we can expect about half of it in
open sky. However, since we are cutting off many signals because of their low C/N0 ratio,
much fewer signals are in reality available for computations. BEIDOU signal B3 also cover
the L5 frequency. This is why I decided to implement BEIDOU signals also in the application,
especially since the satellite position computations are similar to GPS and GALILEO. Since
the Xiaomi Mi8 is a Chinese smartphone, I expected the phone to received B3 signals, which
in reality was not the case. Only B1 (L1) signals are received from BEIDOU satellites, making
them useless for the ionosphere-free combination. BEIDOU integration is explained later in
this section.

To summarize, the system becomes much less redundant with only the L1/L5 satellites, which ex-
plain the noisier positioning and the error spike on the ionosphere-free curve. We can confirm this
by looking at the Geometric Dilution of Precision (GDOP) values, which indicates the quality of
our satellite geometry and represented in figure 3.10. When only dual-frequency L1/L5 signals are
used, DOP values do not go under 2. Usually one should have a GDOP under 2, which is a general
"thumb-rule" for proper quality positioning. This explains why our solution is so degraded with the
ionosphere-free combination for certain epochs. What transpires from figure 3.9 is that doing SPP
positioning with the ionosphere-free combination results in noisier and worse positions than without
it. Because of that, I decided not to use this combination for the SPP algorithm. However, since we
are going toward the development of PPP in real-time, the ionosphere combination has been kept
inside the app. Once more GALILEO satellites will be available, it would be possible to use the dual-
frequency capacities of the phone. Increasing the noise of the measurements with this combination
will not be a problem anymore, since will be resolve the carrier-phase ambiguity, much more precise
than pseudoranges.

To account for the ionosphere delay in our computation, I first assumed it could be easily negated
by signal combination, thanks to the dual-frequency capacities of the smartphone. This turned out
to be untrue as we just saw in this section. We are therefore left with modeling of the ionospheric
delay, following the models described in section 3.2.2. Due to lack of time, I could not perform the
decoding of the ionosphere parameters nor from the GPS navigation message or the RTCM streams.
For future developments of the SPP algorithm, attention should be given on modeling this error in
order to enhance the precision of the solution, either using navigation or RTCM stream messages.
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Figure 3.8 – Single epoch solution, using the ionosphere-free combination (ENU).

Figure 3.9 – Single epoch solution, using the ionosphere-free combination.

Figure 3.10 – GDOP of the L1/L5 solution compared to the iono-free solution.
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BEIDOU is not yet integrated into the previous computations. As GALILEO, this system is
defined similarly to GPS, which makes it easy to integrate with it. After adding the necessary RTCM
streams to retrieve the satellites’ information (see chapter 2), we can integrate it into our solution.
However, we find out that our solution is unchanged in figure 3.11. This is because the number of
BEIDOU satellites kept in the system is low, even if usually 7-9 BEIDOU satellites are visible in the
sky. There are two reasons for that:

1. When we look into the ephemeris retrieved from the RTCM streams, not all the PRN for
the BEIDOU constellation is present. Certain ephemeris are missing in the streams messages
for unknown reasons, which is a problem also observed for certain GALILEO satellites but
much more are missing for BEIDOU satellites. Therefore if we cannot compute the satellite
position, we need to discard this measurement from our computations.

2. BEIDOU signals tend to have smaller C/n0 values, as seen in section 5.2.4. Because of this,
a lot of them are removed by our cutoffs. With those reasons, if only one satellite is left,
no information is added to the system, as we also have to estimate the GPS-BEIDOU Time
Offset (i.e., GBTO, see section 3.3.1).

As we explained earlier, BEIDOU B3 signals close to the L5 band are not received by the phone,
which was the reason why we integrate it in the first place. Integration of BEIDOU is kept in the app,
but they will not be used in the rest of the results presented here, as they had too little to our system.

Figure 3.11 – Single epoch solution, using GPS, GALILEO and BEIDOU constellations.

In conclusion, our solution is improved by the integration of the algorithm described above.
However, we did not use the TDCP algorithm developed in section 3.1.3 yet because we are only
doing single-epoch positioning. In the next chapter, we will develop the Kalman filter that will allow
us to accumulate data from previous epochs, for convergence of a solution.
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This chapter presents the definition of our Kalman Filter for computation of position in static
and dynamic mode.

4.1 Equation definition
A Kalman filter is an essential upgrade once dynamic surveys are performed since the receiver

position will not be fixed anymore. Going from the Recursive Least Square equation defined in section
3.3.2, what is missing is the prediction of what will be the states of our system at epoch k+1. Since
our model is non-linear, this filter will be an Extended Kalman Filter (EKF). It assumes that our
prediction from epoch k− 1 to epoch k is accurate enough, near to the actual position, so that one
iteration of our Kalman is enough.

4.1.1 Prediction model

The general prediction model for a Kalman filter is established in equations 4.1 [2].

X̂−
k = Fk−1X̂k−1

P−
X̂−

k

= Fk−1P̂k−1F
T
k−1 +Qk−1

(4.1)

Where:
X̂− is the predicted state vector;
F is the transition matrix and defines the propagation of the vector parameter estimate x̂;
Q is the process noise matrix, adding noise to our simple prediction model and avoid system lock;
P is the variance-covariance matrix of our parameters.

4.1.2 Update

Once the prediction is computed, an update should be made to compute the solution of the
current epoch.

γk = Yk −Hk · X̂−
k (4.2)

Sk = HkP
−
k H

T
k +Rk (4.3)

Kk = P−
k H

T
k S

−1
k (4.4)

X̂k = X̂−
k +Kkγk

PX̂k
= (Ik −KkHk)PX̂−

k

(4.5)

Where:
γ is the innovation vector;
S is the variance-covariance matrix of the innovation vector;
R is the variance-covariance matrix of our observations;
K is the Kalman gain matrix.
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4.2 Static mode

4.2.1 Matrix definition

No estimation of the user velocity is performed first, to set up correctly the Kalman filter and
make sure that everything was working correctly before going into dynamic mode. We have the same
state vector defined in equation 3.12. The first thing to do when designing a Kalman filter is to set up
the transition matrix F , which will be used to pass from a solution at epoch k to epoch k+ 1. Here,
we now that our position similar from one epoch to another. However, the receiver clock error δtr
cannot be let constant. Since we do not have any estimation of the clock drift rate, we re-estimate
it at each epoch and model it as a white noise with zero mean [2]. As for our inter-system offsets,
they can assume stable between epochs, since their variances shall be better than 8e−14 over a day
[24].

X =
[
x y z c · dtr c ·GGTO c ·GBTO

]T
(4.6)

F =



1
1

1
0

1
1


p×p

(4.7)

The other important matrix to define is the process noise matrix Q. We know that our position
did not change, so there is no need to add noise between epochs to our model. However, since we
are not sure of the receiver clock stability, we give it a one-millisecond noise [2].

Q =



0
0

0
σcdtr

0
0


p×p

(4.8)

σc·dtr = 1ms · c = 300km [2] (4.9)

For the first iteration, the precision of our a priori values need to be estimated in the matrix
P0. Because we want to start our filter with correct assumptions of our parameters, the first epochs
received will be used to compute an approximation of our coordinates using the simple least square
algorithm developed in section 3.3, given us good approximates for our solution. Therefore the
following values can be used to estimate our first state precision.

P0 =



σ2
0,x

σ2
0,y

σ2
0,z

σ2
0,cdtr

σ2
0,GGTO

σ2
0,BGTO


p×p

(4.10)

σ0,x = σ0,y = σ0,z = 10m [2]
σ0,cdtr = 1ms · c [2]
σ0,∆t = 0.25m [2]

σ0,GGTO = σ0,GBTO = 100ns · c [24]

(4.11)
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4.2.2 Results

Taking back the results from section 3.4 where we only smoothed our pseudoranges using the
phase, we can now accumulate data between epochs. We put the phone into static mode, where
it will use the prediction model described above, i.e., no position change. In figures 4.1 and 4.2,
we can clearly see that the positioning solution is enhanced by the Kalman filter, although this was
expected. Indeed we are putting a significant constraint on this filter, by defining the position is
static and should not change. It explains the important inertia of the filter and its slow variation.
Plus, we are no longer using only the data from the current epoch, and our solution is impacted by
the previous epochs as well. As we see in table 4.1, standard deviation values are improved greatly
but also attest to the inertia of our system. Our position is now precise, but not more accurate as
the mean and RMS values are worse than before.

Figure 4.1 – Comparison of single epoch position and Kalman filter (Static).

Single epoch solution Kalman filter (Static)
Statistics East [m] North [m] Up [m] East [m] North [m] Up [m]
Mean -1.209 4.523 -14.571 -1.461 5.132 -7.494

Standard deviation (1 σ) 1.689 1.166 5.594 0.180 0.310 3.611
RMS (1 σ) 2.078 4.671 15.608 1.472 5.142 8.319

RMS 2D (1 σ) 5.112 - 5.348 -

Table 4.1 – Statistics for comparison of single epoch positioning and kalman filter in Static mode.
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Figure 4.2 – Comparison of single epoch position and Kalman filter (Static) (ENU).

Figure 4.3 – Kalman filter solution (Static) with and without DCB corrections.
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Moreover, we see at this point that our position is still impacted by the "jumps" in positions
and the slow bias that can be seen in the single epoch positioning still impact our solution, which
was expected. To try to solve this issue, I have gone through lots of different studies, while trying
to confirm that the different part of my code was correct. I first thought about this issue being
related to an error in the satellites’ positions, which is why I spent much time verifying this part of
the code (see section 2.3.3). However, it did not solve this issue, and I try to look at other possible
explanations. Since we are not performing ionospheric corrections, this positioning bias could also
be linked to that. But by looking at the ionosphere-free combination solution in figure 3.9 that we
presented in the previous chapter, biases are still present even within the noise. I therefore assumed
that the error was elsewhere. In a study [20] I found that Differential Code Biases (DCB), which are
usually negated when doing DGNSS, have a significant impact on the accuracy of a solution. [20]
explains it need to be accounted for in PPP, but I neglected them for SPP before. The study’s results
showed similar biases that are experienced in our results, especially the 5 meters offset visible in the
north components, which was eliminated by applying the DCB corrections on the measurements.
DCBs for all satellites of all constellations are available on the IGS website, being valid for a year in
general. We are also receiving from the RTCM streams in messages 1059 (GPS), 1242 (GALILEO)
and 1260 (BDS). Seeing the results from [20], I decided to decode those messages as well, in order
to correct the pseudoranges from those errors. In figure 4.3, we see that the accuracy of the Kalman
solution before and after applying the DCB corrections do not change and the north components is
even worse than before. Therefore, the root of this offset problem must remain elsewhere. As for
today, I still have not figured out the nature of this offset, which when we look closely was already
present at the initial state of the app on figure 3.3.

4.3 Dynamic mode

The real interest in real-time positioning is the navigation purposes. We want to reconstruct
the user’s trajectory, and our model should contain parameters related to the dynamic part of the
position, i.e., the user’s velocity. It is another reason why a Kalman filter was developed since it
is best suited for estimation and prediction of dynamic parameters from one epoch to another. To
design it, I used the algorithm developed inside [2, 11] and the one developed by another application
called GNSS Compare [14]. This last reference is an open-source code develop during the ESA
competition 2018, which make it easy to see how the model described in the documentation has
been coded in Java inside an Android application. However, since neither of them used TDCP inside
of their design, I adapted their designs and equations so that velocity information can be extracted
from them.

Taking back the matrices we developed in section 3.3.1, we need to add the dynamic components,
which will be the estimation of the user velocity. In this section, we will also introduce the clock drift
δṫr, which will be estimated in our state vector to account for change in the receiver clock between
two epochs.

X =
[
x ẋ y ẏ z ż c · δtr c · δṫr c ·GGTO c ·GBTO

]T
(4.12)

This time, we will use the TDCP algorithm developed in section 3.1.3, since carrier-phase mea-
surements are very precise for velocity estimation [13]. It also allows us to had more measurements
in our system, making it largely redundant for the velocity estimation. What will result from that is
that velocity estimation will be very precise, much more than our position estimation. It will help us
constrain even more our positioning solution and our predictions.

However, this also means that if we start using the phase measurements while starting on some
distant coordinates, depending on the weight we give to the phase measurements, it will take time
to find the correct absolute position. Because of our precise phase measurement, relative positioning
is expected to be great, but absolute positioning will not be directly enhanced. Before passing into
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a dynamic mode, we need to converge onto a correct absolute position. Otherwise, our solution will
be precise but not accurate.

4.3.1 Linear model

Using the models from equation 3.4 and equation 3.1, we can build a new design matrix H and
a new observation vector Y as detailed in equations 4.13 and 4.14.

Y =



...
P j,GPSi − ρj,GPS − c · δtr + c · δtj,GPS

∆Φj,GPS −∆D + ∆g + ek·∆ru − c ·∆δṫr
...

P j,GALi − ρj,GAL − c · δtr + c · δtj,GAL − c ·GGTO
∆Φj,GAL −∆D + ∆g + ek·∆ru − c ·∆δṫr

...
P j,BDSi − ρj,BDS − c · δtr + c · δtj,BDS − c ·GBTO

∆Φj,BDS −∆D + ∆g + ek·∆ru − c ·∆δṫr
...


n×1

(4.13)

Note that since inter-system offsets are assumed constants between epochs, differentiation of
phase measurement neglect them in the observation model.

H =



...
...

...
...

...
...

xr−xj,GP S

ρj,GP S 0 yr−yj,GP S

ρj,GP S 0 zr−zj,GP S

ρj,GP S 0 1 0 0 0
0 xr−xj,GP S

ρj,GP S 0 yr−yj,GP S

ρj,GP S 0 zr−zj,GP S

ρj,GP S 0 1 0 0
...

...
...

...
...

...
xr−xj,GAL

ρj,GAL 0 yr−yj,GAL

ρj,GAL 0 zr−zj,GAL

ρj,GAL 0 1 0 1 0
0 xr−xj,GAL

ρj,GAL 0 yr−yj,GAL

ρj,GAL 0 zr−zj,GAL

ρj,GAL 0 1 0 0
...

...
...

...
...

...
xr−xj,BDS

ρj,BDS 0 yr−yj,BDS

ρj,BDS 0 zr−zj,BDS

ρj,BDS 0 1 0 0 1
0 xr−xj,BDS

ρj,BDS 0 yr−yj,BDS

ρj,BDS 0 zr−zj,BDS

ρj,BDS 0 1 0 0
...

...
...

...
...

...


n×p
(4.14)

4.3.2 Prediction model

We are no longer staying static on a point, and the prediction model needs to be changed so
that the predicted solution uses the new velocity information we are computing. GNSS Compare
application’s Kalman filter was tuned by its developers using empirical values (SX , SY , SZ) and
using the reference [7]. I decided to use their work to tune the Kalman filter I developed. Regarding
the receiver clock error modeling, they used typical Allan Variance Coefficients values developed in
[7], p.326-327, for low-quality receiver clocks. The new transition matrix F is presented in equation
4.15 and the process noise matrix in equation 4.16 [2, 14].
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F =



1 ∆T
1

1 ∆T
1

1 ∆T
1

1 ∆T
1

1
1


p×p

(4.15)

Qk =



SX ∆T 3

3
SX ∆T 2

2
SX ∆T 2

2 SX ∆T
SY ∆T 3

3
SY ∆T 2

2
SY ∆T 2

2 SY ∆T
SZ ∆T 3

3
SZ ∆T 2

2
SZ ∆T 2

2 SZ ∆T
Sf + Sg ∆T 3

3
Sg ∆T 2

2
Sg ∆T 2

2 Sg ∆T
0

0


(4.16)

SX = SY = 0.2m [14]
SZ = 0.01m [14]

Sf = h−2
2 [7]

Sg = 2π2h−2 [7]
h0 = 2e−19 · c2 [7]
h−2 = 2e−20 · c2 [7]

(4.17)

P0 =



σ2
0,x

σ2
0,vel

σ2
0,y

σ2
0,vel

σ2
0,z

σ2
0,vel

σ2
0,cdtr

σ2
0,cḋtr

σ2
0,GGTO

σ2
0,BGTO


p×p

(4.18)

σ0,x = σ0,y = σ0,z = 10m [2]
σ0,vel = 0.01m/s [14]
σ0,cdtr = 1ms · c [2]
σ0,∆t = 0.25m [2]

σ0,GGTO = σ0,GBTO = 100ns · c [24]

(4.19)
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4.3.3 Results analysis

We can now perform a dynamic test of our navigation solution. The reference point CECIL
is surrounded by a small wall (about 0.5 m high) which taken as a reference. After performing a
pre-survey using a high-quality receiver Septentrio AsteRx3 to establish the reference base, I went
performed several laps around this ring with the application. At the beginning and the end of the
survey, I performed a static acquisition of about 1m30s to let the Kalman converge to a correct
absolute position. In figures 4.4, the single epoch solution is compared to the dynamic Kalman
filter defined in the previous section. As we can see the offset present in our previous computations,
especially the 5 meters offset in the north direction is still largely visible here. In order to easily
compare the precision of this dynamic solution, we can try to remove those offset and align the
solution with the reference, which is known to be accurate to a centimeter-level. By removing 1
meter in the east direction and 5 meters in the north direction, which is the approximate mean of
the offset found after convergence of our solution during the static phase at the beginning of the
survey, we obtain figure 4.6.

Figure 4.4 – Comparison of single epoch position and Kalman filter (Dynamic).

The solution is now accurate at the beginning of the survey, and we can study the precision of our
solution. Several observations can be made looking at the new graph. First, our Kalman solution is
much more precise than our single epoch solution, as one would expect from a Kalman filter. Like in
our static Kalman, we are accumulating data from several epochs, but we also estimate our velocities
using the TDCP algorithm. This gives us access to the very precise phase measurements. That way,
we also estimate our clock drift, and we can constrain our solution with it. This explains the very
smooth solution we can compute, more resilient than the pseudorange only solution. Indeed, We see
that our trajectory on the east side of the ring is kept close to the reference, while our single epoch
solution diverges from it. However, while our precision is very resilient, our accuracy still diverges
at the end because our absolute positioning is not correct, as we "cheated" at the beginning of the
survey by removing the offsets. This explains why our loop has a large offset of about 2 meters
at the end and does not close correctly the circle made. Indeed if we continue for a second lap,
like represented in figure 4.7, we see that our precision is still good, but we continue to diverge in
absolute positioning.

Nevertheless, our positioning solution is still significantly improve by adding phase measurement
with the TDCP method. Once the offset issue is fixed, we can expect a sub-meter accuracy and
precision on the smartphone just by using the GNSS measurements.
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Figure 4.5 – Comparison of single epoch position and Kalman filter (Dynamic) (ENU).

Figure 4.6 – Comparison of single epoch position and Kalman filter (Static).
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Figure 4.7 – Comparison of single epoch position and Kalman filter (Static), with two full laps.
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This chapter presents the Precise Point Positioning technique and introduce the challenges related
to this method.

5.1 Technique definition
The Precise Point Positioning technique is a GNSS positioning method based on the observation

of only one receiver. Contrary to the Differential GNSS (DGNSS), no measurements differentiation
is made between two receiver to negate clocks and atmospheric errors. Therefore these need to
be accounted for when computing the solution, either by signal combination (Iono-free, Melbourne-
Wübbena combination) or modeling. Such methods allow removing a lot of the measurement error,
which will allow us to find the carrier-phase ambiguity of the signal and is what differentiates PPP
from SPP. This is why dual-frequency and access to precise ephemeris are mandatory to perform
this technique. The PPP model presented here is a model defined by the ESA book [2] and from a
lecture I had during my studies in ENSG presented by Pierre Bosser (ENSTA Bretagne)[6] and Xavier
Collilieux (ENSG). I adapted it to the smartphone case, to only account for the interesting errors and
to explain how the algorithms developed in chapters 4 and 5 can be enhanced for PPP computations.

The reason why I did not pursue the PPP development is because it has proven to be very
challenging from the research papers I found. Especially when I attended the Prague workshop in
late June, I found out that all research teams had trouble with real-time PPP. Even during my
internship, new papers about post-processing PPP on the Xiaomi Mi8 were still being published [43]
and nothing yet related to real-time PPP. I therefore decided to focus my work on enhancing the
SPP solution, allowing real-time positioning with a good precision for pedestrian navigation, without
the need for ambiguity estimation. While I did not have the time during this internship to introduce
this algorithm inside the phone, I still performed much research on it because it was my primary
goal at first. I therefore wanted to leave a summary of this work for the next person whose going
to continue the development of the app, especially since he/she might not be specialized in GNSS
positioning.

5.1.1 Measurement modeling

Taking back what’s been developed in section 3.1, we need to introduce a few more corrections
to build our PPP model. Recalling equation 3.1, we can enhance it for PPP purposes [2, 6]:

P j3 = ρj + c · (δtr − δtj) + δuj + τ jiono + τ jtropo + bjr + δrcrust + ε

Φj
3 = ρj + c · (δtr − δtj) + δuj − τ jiono + τ jtropo + λ3 ·N j

3 +Bj
r + λ3 · ωj + δrcrust + ε

(5.1)

bjr is the Differential Code Bias between the receiver and the satellite;
Bj
r is the Differential Phase Bias between the receiver and the satellite;

λ3 is the wavelength of ionosphere-free combination (L1/L5);
ω is the Wind Phase Up effect, due to polarization of the electromagnetic signal;
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For the PPP computations, we are only going to use the ionosphere-free measurements computed
from the combination of L1 and L5 signals, as we described in section 3.2.3. All the different correc-
tions are related to this combination. Also, Differential Code Biases are not present here, because
they are removed along with the ionospheric error when using the ionosphere-free combination.

5.1.2 Kinematic PPP and ambiguity resolution

We are talking here about ambiguity estimation and not resolution in this algorithm. In theory,
since the ambiguity N is a number of cycles, it is defined an integer, meaning that is estimation
as a float number is erroneous and contrary to the physics behind the electromagnetic signals.
Therefore, for maximum precision, we should fix it to its actual integer value at some point in the
estimation process. This process is called fixing or resolution of the ambiguity. However, it is very
demanding in processing costs, because a lot of different values to be tested to resolve it. Several
fixing algorithms with different approaches exist [28, 19] like in differential GNSS, with some be-
ing under patent. Since it would require much more time to develop an ambiguity-fixing part than
the rest of the PPP, estimation is more than enough for real-time positioning on a smartphone.
However with the ionosphere-free combination the ambiguity looses its integer quality, becoming a
float. Therefore, another combination of signal would be more suitable for ambiguity resolution, like
Melbourne-Wübbena combination, which also remove the ionosphere delay from the measurement
while keeping the integer quality of the phase ambiguity. For details on other combinations that are
more suitable for ambiguity resolution, please refer to [2], p.70.

Note that the process of only estimating the ambiguities is called kinematic-PPP, although it
does not mean that our receiver will be moving, only that the ambiguities are not fixed.

5.2 Corrections

5.2.1 Precise orbits and clocks corrections

Precise satellites orbits and clocks are mandatory for PPP positioning, since an error in satellite
position will directly be seen in the user position, especially when working at the decimeter and
even centimeter-level with the phase measurements. This is why decoding of the precise corrections
messages has been one of the first steps of the development during this internship, even though they
are not mandatory for a correct SPP. Our goal is still to perform every computation in real-time,
which makes the development of a PPP-RTK algorithm uneasy. For a detailed explanation of how
the precise ephemeris and clocks are retrieved, please refer to chapter 2.

5.2.2 Tropospheric correction

The tropospheric correction can be partly estimated in the state vector for accurate modeling.
τtropo can be modeled as in equation 5.2, using the satellite elevation and the Mapping of Niell,
which does not require any surface meteorology measurements. More information of this model can
be found in the ESA Open Book [2], p.125-126.

τ jtropo = Tr0(Ej) +Mwet(Ej) ·∆Trz,wet
Tr0(Ej) = Trz,dry(Ej) ·Mdry(Ej) + Trz0,wet(Ej) ·Mwet(Ej)

(5.2)

Trz,dry(E) = αe−βH

Trz,wet(E) = TrZ0,wet + ∆TrZ,wet
(5.3)

Where Ej is the elevation of the jth satellite, H the height above sea level of the user and
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α = 2.3m; β = 1.16e−4m; TrZ0,wet = 0.1m. (5.4)

Mdry and Mwet are related to the Mapping of Neil function, which gives the corresponding
coefficients depending on the satellite elevation and the position of the user on Earth. The coefficients
are linearly interpolated from the tables that can be found in Appendix B, extracted from the ESA
book [2], p.126, tables 5.2 and 5.3.

Mdry = m(E, ad, bd, cd) + ∆m(E,H)

∆m(E,H) = ( 1
sin(E) −m(E, aht, bht, cht))

(5.5)

Mwet = m(E, aw, bw, cw)

∆m(E, a, b, c) =
1 + a

1+ b
1+c

sin(E) + a
sin(E)+ b

sin(E)+c

(5.6)

The constant part of the tropospheric delay TrZ0,wet is removed from the measurements and the
variable part ∆TrZ,wet is estimated in the state vector.

5.2.3 Multipath handling

Multipath is an important issue when performing precise positioning and less easy to find out
in measurements than cycle slips. It is even more critical for smartphone receivers, as they are not
resilient at all to it compare to a geodesic grade antenna. In Google API, methods already exist
to flag measurements that may be contaminated by multipath, similar to the cycle slips detectors
explained in section 1.3.2. However, their robustness is yet to be proven and will be studied by
Yazhend Wei, another intern at Geoloc laboratory, that will pursue this work in her internship. More
multipath may need to be added to the application before PPP can be performed on the phone.

5.2.4 Antenna biases and orientations

Here, we introduce a new component called the Phase Wind Up effect, which a correction due to
the relative orientation of the satellite antenna and the receiver’s antenna. Since we are now going to
use the phase measurement plainly and to find its ambiguity, we need to account for all the possible
errors directly related to it. Details on how to compute this effect is given in [2], p.127-128.

Note that since we are using the ionosphere-free combination here, the satellites coordinates
given to compute ρ will need to be related to the ionosphere-free phase center. Since we are using
precise orbits from RTCM streams, coordinates are already referred to the satellite’s Antenna Phase
Center (APC) of the ionosphere-free combination signal. However, if one were to use the precise
products from IGS, namely the ultra-rapid products, those are related to the satellite’s mass center
and therefore needs to be corrected. In theory, we would also need to account for the receiver’s APC,
but this would mean that we have a complete calibration model for the smartphone GNSS antenna.
Those kind of models are usually performed on geodesic grade antenna but are not relevant in the
smartphone case because of the poor antenna quality. To that with have to add the effect of the
human body, creating big masks when in the vicinity of an antenna (see section ). Since we want
to compute the position while our smartphone being in our hand, the antenna calibration model
become even less relevant.

Finally, [2] also mention that satellites under eclipse conditions need to be removed entirely from
computations because of their significant orbital errors due to the solar radiation pressure that cannot
be easily accounted for. Detailed on how to find the eclipse condition of a satellite can be found in
[2], p.102.
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5.2.5 Satellite and receiver phase bias

The Differential Phase Bias between satellite and receiver has been added in the new definition of
our model given in equation 5.1. Also called fractional part of the ambiguities in [2], they represent
the bias present in the antennas of the satellites and the receiver. If not accounted for, the estimation
of the ambiguity N will contain them, and this ambiguity can not be viewed as an integer anymore.
However, this is not a real problem for us here since we are already assuming our ambiguity as a float
number. Indeed, we said in section 5.1.1 that we are only estimating and not solving the ambiguities.
Moreover, we are using here the ionosphere-free combination, and our ambiguity has already lost its
integer quality. This is why in the model developed by [2] for kinematic-PPP, no phase bias is being
estimated, since kinematic-PPP is not precise enough to account for those.

Nonetheless, since it can still create bias in our float ambiguities, it is always interesting to remove
as many errors as possible. Therefore I wanted to point out that since we are receiving RTCM streams
for precise corrections, we can also receive the satellite phase biases computed by centers in real-time,
since this part of the biases is common to every receiver. They are sent in messages 1059 (GPS),
1242 (GALILEO) and 1260 (BEIDOU), that the mount point "CLK93" managed by the CNES. For
high accuracy purposes, these streams can be decoded in the app once the PPP algorithm is being
set up inside, as it was done for the Differential Code Bias (see section 4.2.2).

5.2.6 Earth deformation effects modeling

Earth tide, ocean loading and pole tide, summarized as earth deformation effects, are essential
phenomena to model and to take into account when performing PPP, to remove any error that is
not related directly to the receiver noise. However, these errors start becoming visible when reaching
sub-decimeter level precision [2], which is still a bit far from what we can expect from a PPP-RTK
with only estimation of the phase ambiguities (i.e., no resolution yet). These can be neglected at
first when the model is being set up. However, it will be interesting to add it once the ambiguity
resolution has been reached, as it would greatly improve the vertical component of the position.

5.2.7 Model redefinition and linear form

By taken into account the different corrections we talked about in the previous sections, we can
re-write the measurement model as follow

P j3 = ρj + c · (δtr − δtj) + Tr0(Ej) +Mwet(Ej) ·∆Trz,wet
Φj

3 = ρj + c · (δtr − δtj) + Tr0(Ej) +Mwet(Ej) ·∆Trz,wet + λ3 ·N j
3 .

(5.7)

Leaving us with only the parameters that we are going to estimate. As it’s been done in section
3.3.1 for our previous model, we can linearized this equation as a system Y = G ·X.

X =
[
x y z c · δtr c ·GGTO c ·GBTO ∆Trz,wet λ3 ·N1 . . . λ3 ·N j

]T
(5.8)



5.3 Kalman filter 67

Y =



...
P j,GPSi − ρj,GPS − c · δtr + c · δtj,GPS − Tr0(Ej)
Φj,GPS
i − ρj,GPS − c · δtr + c · δtj,GPS − Tr0(Ej)− λ3 ·N j,GPS

3
...

P j,GALi − ρj,GAL − c · δtr + c · δtj,GAL − Tr0(Ej) −c ·GGTO
Φj,GAL
i − ρj,GAL − c · δtr + c · δtj,GAL − Tr0(Ej)− λ3 ·N j,GAL

3 −c ·GGTO
...

P j,BDSi − ρj,BDS − c · δtr + c · δtj,BDS − Tr0(Ej) −c ·GBTO
Φj,BDS
i − ρj,BDS − c · δtr + c · δtj,BDS − Tr0(Ej)− λ3 ·N j,BDS

3 −c ·GBTO
...


n×1

(5.9)

H =



...
...

...
...

...
...

...
...

...
...

...
...

xr−xj,GP S

ρj,GP S
yr−yj,GP S

ρj,GP S
zr−zj,GP S

ρj,GP S 1 0 0 Mwet(Ej) 0 . . . 0 . . . 0
xr−xj,GP S

ρj,GP S
yr−yj,GP S

ρj,GP S
zr−zj,GP S

ρj,GP S 1 0 0 Mwet(Ej) 0 . . . 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
xr−xj,GAL

ρj,GAL
yr−yj,GAL

ρj,GAL
zr−zj,GAL

ρj,GAL 1 1 0 Mwet(Ej) 0 . . . 0 . . . 0
xr−xj,GAL

ρj,GAL
yr−yj,GAL

ρj,GAL
zr−zj,GAL

ρj,GAL 1 1 0 Mwet(Ej) 0 . . . 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
xr−xj,BDS

ρj,BDS
yr−yj,BDS

ρj,BDS
zr−zj,BDS

ρj,BDS 1 0 1 Mwet(Ej) 0 . . . 0 . . . 0
xr−xj,BDS

ρj,BDS
yr−yj,BDS

ρj,BDS
zr−zj,BDS

ρj,BDS 1 0 1 Mwet(Ej) 0 . . . 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...


n×p

(5.10)

Where n is the number of observations, and p is the number of parameters. We also define our
approximate solutions. Since we know our ambiguities multiply by the wavelength should have the
same magnitude as the pseudorange measurement, they can be initialized for the first iteration with
it.

X0 =
[
x0 y0 z0 0 0 0 0 P 1

3 . . . P j3

]T
(5.11)

5.3 Kalman filter
The PPP problem can hardly be solved instantaneously in one epoch computation, while it is true

that recently Laurichesse at al. [27] have managed to perform it on a multi-system, multi-frequency
approached. However, in general and especially for receivers sensible to significant errors in their
measurements, a convergence time is needed to reach a sufficient amount of information to get
a precise estimation of our parameters and before any ambiguity resolution. Since PPP has been
introduced, this convergence time has been reduced more and more throughout the years. Nowadays,
with a geodesic grade receiver, a convergence time of a few minutes can be expected for a decimeter
level precision (see Fast-PPP, [2], p160-161). However, for receivers and antennas of lower quality,
this time tends to be much higher, as we talked about during the State of the Art section 1.1.

Nevertheless, one of the ways to achieve this convergence is through a Kalman filter, which its
prediction model is going to be described in this section. The equations developed in section 4.1 for
resolution of the system are similar here, and will not be written again in this section.



68 Precise Point Positioning

5.3.1 Prediction model

The transition matrix F is first defined, taking back what has been defined in equation 4.7.
Because of the difficulty to converge to a correct estimation of the N ambiguity, we first assume
that we are in static mode. Once the precision is sufficient, we could go into dynamic mode with
maximum precision, but we are assuming simple conditions here, as we will see that PPP estimation
on smartphone in real-time is far from trivial. Except for our receiver clock, everything else is assumed
constant here, especially the ambiguities N . Regarding the Q representing the process noise, only
the receiver clock and the tropospheric coefficient are can change between epochs. The values are
taken from [2], p.154.

F =



1
1

1
0

1
1

1
. . .

1


p×p

(5.12)

Q =



0
0

0
σcdtr

0
0

σ∆t + dσ∆t
dt

0
. . .

0


p×p

(5.13)

σc·dtr = 1ms · c σ∆t = 0.25m dσ∆t
dt

= 0.01m/h ≈ 2.78 · 10−6m/s [2] (5.14)

Note that σGGTO and σGBTO is also assume to be 0 here. According to [24], its stability is
expressed as an Allan deviation and should be better than 8 · 10−14 over one day.

For the first iteration, the precision of our a priori values need to be estimated in order to initialize
the P0 matrix. Values have been chosen by using the reference given next to it.

P0 =



σ2
0,x

σ2
0,y

σ2
0,z

σ2
0,cdtr

σ2
0,GGTO

σ2
0,GBTO

σ2
0,∆t

σ2
0,N1

. . .
σ2

0,Nj


p×p

(5.15)
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σ0,x = σ0,y = σ0,z = 10m [2]
σ0,cdtr = 1ms · c [2]

σ0,GGTO = 100ns · c [24]
σ0,GBTO = 100ns · c [24]

σ0,∆t = 0.25m [2]
σ0,Nj = 0m [2]

(5.16)

As we detailed before, the system can then be solved using the equations defined in section 4.1
and the system should start slowly converging after several minutes.

5.3.2 Smart handling of ambiguities

However, all this is assuming that no cycle slips happened. Since we are dealing with the low-
quality GNSS antenna present in the phone, it is common to see cycle slips in the measurements as
we saw in section 5.2.4. When a cycle occurs, ambiguities can be assumed as white noise, meaning
σ0,Nj = 1e4m [2] for example, to reduce the weight of this measurement in the system.

Since everything is to be done in real-time, we need to account for new satellites appearing and
disappearing in the sky. A new satellite means that our state vector size will need to be increased for
a new ambiguity estimation. Satellites disappearing will mean that we have to remove its ambiguity
from the estimation. These problems are more related to code development of the algorithm, but
will need to be answered once the PPP capacities are added to the application.





Conclusion

The objective of this internship was the integration of the GALILEO signals received by a smart-
phone inside the Android application GeolocPVT for real-time positioning. The device studied was
the Xiaomi Mi8 with dual-frequency capacities, which receive GALILEO signals but does not de-
code the navigation message from the signal. We showed that the ephemeris information of all the
constellation could be retrieved by using RTCM streams sent by the IGS-RTS project. Moreover,
precise corrections could also be retrieved, allowing users to perform PPP-RTK in the future. After
the integration of those streams inside the application, we demonstrate that adding GALILEO sig-
nals enhanced the precision of our computed position greatly. We also performed the integration of
BEIDOU constellation in order to enhance the multi-constellation capacities of the GeolocPVT app.
This answered the main objective of this internship.

While the accuracy of the final position still contains offsets for unknown reasons, the precision
of our positioning continued to be enhanced by adding phase smoothing capabilities. Precise kine-
matic positioning is now possible in real-time in the app by estimation of our velocity with a TDCP
algorithm, using the precise phase measurements. A Kalman filter was designed for this, leading to
a convergence on a precise position by accumulating information over epochs. We were able to tune
the filter for pedestrian navigation, and tests in an open-sky environment have been conducted to
analyze the app capacities. Future developments should focus on developing this algorithm on more
challenging environments, e.g., urban canyoning, and with the presence of significant masks like the
human body, as detailed in chapter 1. Integration of inertial data in the solution should also be
looked into for this, for coupling of GNSS and INS, as it has shown excellent results in other studies
[44].

A PPP algorithm also have been developed, PPP-RTK becoming now possible with the precise
corrections retrieved in real-time by the phone. Due to lack of time, this PPP algorithm could not be
integrated into the app yet, although the mathematical model has been described in length during
the last chapter of this research paper. However, before integration of this algorithm, several points
will need to be answered, i.e., the errors in satellites positions evoked in chapter 2 and the offset
present in the north direction visible in the solutions from chapter 3 and 4. I believed these errors
are linked and that answering the first one should correct the offset issue.

This project allowed me to extend my knowledge greatly in GNSS positioning, especially on the
PPP technique. The future of GNSS positioning lies in the development of this technique. I learned
the theory of it during my year at ENSG, and I was very interested in going in-depth in it during this
internship. While PPP algorithms are getting better, it is still a challenge when it comes to low-cost
GNSS receivers and antenna. However, many research teams around the world are studying it, and
new smartphones like the Xiaomi Mi8 with enhanced GNSS capacities are coming out, increasing
the positioning capacities of those receivers and getting closer to real-time PPP. This internship also
allowed me to be part of a research laboratory and team. I have been interested in doing a PhD
thesis after my engineering degree for a long time, and this internship comforted me in doing it.
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Simplified class diagram A
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Class diagram of the GeolocLib library, containing the computation functions for the GeolocPVT

app. To make it easier to read, the dependencies liaisons have not been displayed, nor the methods
and the variables. Only liaisons between abstract and child classes are represented.





Troposphere coefficients A
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Extracted from the ESA GNSS Book [2], p.126.





Article: Efficient Use of
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Real-Time Precise Point Po-
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This article is to be published to the WPNC 2019 conference and has been added to explain
further how streams can be used in IoT devices. Since it is not published yet, its access here is
CONFIDENTIAL.



Con
fide

nti
al

Efficient Use of SSR RTCM Streams For Real-Time
Precise Point Positioning on Smartphones

Grenier Antoine
GEOLOC
IFSTTAR

Nantes, France
antoine.grenier@laposte.net

Renaudin Valérie
GEOLOC
IFSTTAR

Nantes, France
valerie.renaudin@ifsttar.fr

Abstract—Since the availability of GNSS raw measurements
from the Google Nougat API in 2016, researches have been as-
sessing the smartphones performances and GNSS data’s quality.
The goal since then is to compute a precise position and to assess
with exactitude the quality of this computation. As the Internet
of Things (IoT) grows more everyday, embedded sensors spread
everywhere to acquire, assess and monitor our environment,
in which low-cost and precise positioning is a mandatory step
toward this goal. The low-cost adjective here does not only relate
to the financial cost of the GNSS receiver, but comprises also
other costs like Internet data consumption, battery consumption,
computations cost. Using the Google API and new generation
smartphones, those costs can be assessed to produce smarter,
more efficient and optimized positioning solution, which will later
be ported on other IoT devices.

This paper presents the group research on the development
of real-time Precise Point Positioning (PPP-RTK) in an Android
application. The RTCM streams are presented, leading to an
analysis of their benefits for efficient positioning. Focus is given
on assessing the cost of precise products in terms of internet data
consumption.

Index Terms—PPP, PPP-RTK, Android Raw Measurements,
RTCM streams, IGS-RTS

I. INTRODUCTION

With the growing use of IoT devices for research and mass-
market purposes, the need for low-cost precise positioning
is increasing significantly. In 2016, Google announced the
availability of GNSS raw measurements directly through the
Google API, starting with Android version 7 (Nougat). This
leads to the development of several positioning apps (GNSS
Compare [1], PPP Wizlite [2], ...) used to assess for the first
time the quality of GNSS signals received on smartphones.
DGNSS-RTK technique was used to compute positions from
those measurements, either in post-processing or in real time
[3]. However, real-time PPP or PPP-RTK are still not as easily
manageable as DGNSS-RTK since measurements corrections
of atmospheric effects needed to be modeled

Following that, Xiaomi released a new smartphone “Xiaomi
Mi8” in June 2018, integrating a Broadcom BCM4775X
GNSS receiver with dual-frequency (L1/L5) capacities. This
was an important step in smartphones and IoT developments,
opening the way for highly precise positioning algorithm. With
multiple frequency, signal combination, which is mandatory

for ambiguity fixation and signal corrections (e.g. Iono-free
combination), is possible.

Following the release of the phone, quality assessment of
the GNSS receiver, in particular phase measurements’ quality,
has been done in several studies [4]–[6], where post process-
ing PPP using multiple constellations and frequencies have
been realized too. Robustelli et al.[4] presented a positioning
solution with ambiguity estimation, also known as floating
ambiguities, with the Mi8 using multiple constellation (GPS,
GLONASS, GALILEO) and only L1/E1 measurements. Using
RTKLIB as a post processing software, they achieved a sub-
meter positioning in low-multipath environment after 1 hour of
convergence time, showing that multi-constellation improved
positioning compared to GPS only solution, which highlights
the need for multi-constellations when computing PPP. Using a
different model, Wu et al. [5] achieved a sub-meter positioning
after a convergence time of 102 min, rapidly converging
afterwards to a 0.2 m accuracy after 116 min.

Nottingham Scientific Limited team (NSL) with the
FLAMINGO initiative [6] (Fulfilling enhanced Location Accu-
racy in the Massmarket through Initial GalileO services) per-
formed a kinematic positioning reproducing the movement of
a pedestrian walking on straight line. Although their protocol
is different from previous studies, they showed a final RMSE
of 2.23m using PPP, largely impacted by the multipath effects
of the experience environment. The positioning computations
were once again performed on RTKLIB in post processing. It
is important to note that the FLAMINGO initiative final goal
is to develop a complete SDK (Software Development Kit) to
be integrated inside applications with a positioning accuracy
of a few decimeters in real time. Right now this initiative is
still in the early stage of development.

All these examples were performed in post processing mode
and not in real-time aboard the phone, resulting in more
manageable PPP computations. Indeed, once in real-time,
computations need to account for other corrections, starting
with the lack of final precise orbits from the IGS (International
GNSS Service). This leads to difference in satellite positions
computations and worse accuracy of those positions,, but also
to more IoT related issues like Internet data consumption on-
board the app or battery consumption as well.

GEOLOC is currently developing an Android application,
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Fig. 1. Screenshot of the GeolocPVT Android application

called “GeolocPVT” (fig. 1), using raw measurements for
precise positioning. The app current development allows a
position computation with a HRMS (Horizontal Root Mean
Square) of about 6 meters in an open sky environment. A
plot of the positioning capacities of the app is given in fig.
2. This is done using the IGS Real Time Service (IGS-RTS)
products, sending navigation data under the Radio Technical
Commission for Maritimes Services (RTCM) protocol also
known as RTCM streams. It is through the integration of
those streams and the amount of data needed to use them
continuously that the question of how to optimize the stream
retrieval became a challenge for the app development. The
solutions to account for lack of precise ephemeris in real time
are detailed in section II, where the basics of State Space
Representation (SSR) streams are reviewed. Focus is then
given on assessing the internet data needs of real time precise
orbits and how these data consumption can be reduced with
efficient use of RTCM streams. An integration of those streams
inside an Android application is explained in section IV and
details about the future app developments complete this paper.

II. REAL-TIME PRECISE ORBITS AND CLOCKS

For precise positioning, precise satellites’ orbits and clocks
are needed, since errors on those will directly impact the
accuracy of the user’s position. The accuracy of the broadcast
orbits’ is only about 1m/5ns and therefore not sufficient alone
to be used in highly precise applications.

A. Ultra-rapid IGS products

Precise products are diffused by the IGS (International
GNSS Service), with different accuracy depending on the
observation date. Final products, which give the best accuracy
(about 2.5cm on orbits/75ps on satellite clocks), are only
available after 15 days. For real time purposes, earlier products
need to be used, like ultra-rapid products. They are predicted,
meaning they are based on previous observations and not the

Fig. 2. Scatter plot a L1/L5 solution using both GPS and GALILEO signals.
Blue cross represent a single epoch solution, the red point is the reference
position found using a geodesic grade receiver and assumed to be exact

actual observations, and are available in real time but less
precise (about 5cm/3ns).

Those products are available through the FTP servers of
the IGS network in SP3 format. Files contain a position for
each satellite of the constellation assigned to a timestamp in
UTC, with a sampling rate of 15min. When one wants to
compute the satellites’ positions for a certain time, a 10th-
order polynomial interpolation function is usually applied [7].
While this might work correctly for satellites positions, the
interpolation process is not recommended for satellites clocks,
also contained in ultra-rapid SP3 file, but with a sampling rate
of 15min as well. According to ESA [7], products with a low
sampling rate (i.e. greater than 30s) should not be interpolated
because their evolution corresponds to a random walk process.
This highlights an issue in using IGS ultra-rapid products for
real-time PPP, since precise clocks estimation is mandatory
for precise positioning.

Finally, it’s important to notice that those files are only
available for GPS satellites and no other constellations on the
IGS servers. As mentioned before, multiple constellation is
the key for PPP, especially in constrained environments like
urban canyon, which is where a smartphone is most likely
to operate. This emphasizes another problem with ultra-rapid
products, which is their availability for all constellations.

B. IGS-RTS products

Since 2001 [8], IGS has also been developing another ser-
vice called Real Time Service (RTS). Its goal is to diffuse real-
time products to users to perform real-time positioning. Joining
the RTCM, they developed the State Space Representation
(SSR) standard, enabling the diffusion of orbits and clocks
corrections through the Internet using bytes streams.

RTCM protocol is divided in messages, each having an
ID used to identify their GNSS contents. For example, GPS
constellation corrections are in the messages 1057 to 1062 [9].

• 1057 - SSR GPS Orbit Correction
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• 1058 - SSR GPS Clock Correction
• 1059 - GPS Code Bias
• 1060 - SSR GPS Combined Orbit and Clock Corrections
• 1061 - SSR GPS URA
• 1062 - SSR GPS High Rate Clock Correction
• 1019 - Broadcast GPS orbits
Similar messages with different IDs can be found for other

constellations: GLONASS (1063-1068), GALILEO (1240-
1245), QZSS (1246-1251) and BDS (1258-1263). The RTCM
standards version 10403.3 [10] details the contents of each
message. Note that message 1019 is not really in the SSR
section of RTCM protocol, but will need to be retrieved for
satellites coordinates computations in real time.

The IGS-RTS requires special identification to retrieve those
streams and as for now only research purposes projects are
granted access. For this study, a parallel access to three streams
was granted to the IGS server “rt.igs.org”.

The IGS-RTS offers different server to be connected to, each
one offering a list of mount points (i.e. casters). Each of those
corresponds either to a permanent base site or a processing
center. They will send certain types of message types, with
a certain rates, depending on the mount points specifications.
This means that not all streams contain the same messages,
therefore not all constellations either. Using the BKG software
”BKG NTRIP Client” or BNC [11], an open sourced NTRIP
software, one can look into the content of the stream sent
by each point, to find the most suitable stream to receive the
desired corrections.

C. Benefits of the IGS-RTS

Using this service, it becomes possible to retrieve the orbits
and clocks information of all systems, depending on which
mount points the device is connected to. According to Wang
et al.[12], the mount point CLK93 from the CNES (Centre
National d’Etude Spatiale, France) is one of the only mount
point sending corrections for GPS, GLONASS, GALILEO
and BEIDOU constellations. This was verified with the in-
troduction of these streams in the GeolocPVT app, to retrieve
GPS and GALILEO corrections using this mount point. For
receiving messages 1019 and 1045 (GALILEO) containing the
broadcast ephemeris data, the ”TLSG00FRA0” mount point
was used. However, following changes on the used IGS server
(rt.igs.org), this mount point became unavailable and instead
the mount point named ”RTCM3EPH” was used (see section
III-D).

Another benefit of using the streams corrections is the final
precision obtained for satellite positions and clocks. IGS-RTS
products are as accurate as the predicted half of the ultra-
rapid products [13] while offering satellite clocks corrections
with a much higher sampling rate. This depends on the
mount points specifications. A 5 seconds rate is common for
clocks corrections to avoid inaccuracies inherited with longer
interpolation [8]. This is a huge improvement compare to the
ultra-rapid products, satellites clocks being one of the largest
error source in positioning that is not canceled out in PPP like
it would be in DGNSS.

III. DATA CONSUMPTION IN POSITIONING

In the IoT, an important variable when setting up a device is
cost. Financial cost, but also energy and data costs. As IoT’s
devices are meant to be interconnected, Internet data usage
need to be reduced, especially for completely independent de-
vices, that must rely on efficient data and power management.
In this paper, we focus on Internet data consumption, leaving
out the power management, although those two are correlated
with each other since higher internet consumption will induce
higher battery usage [14].

We estimate the amount of necessary data to perform a
multi-constellation PPP computation with a 1h convergence
time. This duration was chosen according to state of the art
studies, showing a 30 minutes minimum time to convergence
in PPP-static mode using the IGS-RTS products [12] with
geodesic grade receiver for a precision of decimeter-level, and
up to nearly 2h using Xiaomi Mi8 phone’s GNSS receiver [5].

A. Ultra-rapid products data requirements

IGS FTP mirror sites provide .SP3 ultra rapid products of
about 186 KB (i.e. 191 000 Bytes). It contains precise position-
ing for 48h: the first 24h are the one previous to the uploaded
time, realized with actual observations. These are not useful
for us since we are doing real time positioning. The other
24h are predicted positions based of the past measurements.
New versions are available every 6h. They are more precise
than the previous ones since they are based on more recent
observations. This means that every 6h a new file needs to
be downloaded to have the most recent and precise data set.
Furthermore, this only concerns the GPS constellation, since
ultra-rapid products are made for the GPS constellation only.
In theory, if the products existed, this amount of data would
need to be multiplied by the number of constellations used in
the computations.

B. RTCM streams data requirements

Regarding the streams, an accurate calculation of the
amount of data used is a bit less trivial. Each message is
encoded on certain amount of bits (8 bits = 1 bytes). Sizes are
listed in table I, with their equivalents in Bytes. One message
contains the info for one satellite. It is important to multiply
by the number of satellites nsat contained in the stream to find
the size per message type. Depending on the mount point, the
number of satellite varies. For example, some mount points
only send the broadcast ephemeris of the satellites in view
(e.g. 12 satellites for GPS). This is related to the mount points’
specifications, evoked in section II. For the ”RTCM3EPH”
mount point, all satellites of a constellation are always present
(e.g. nsat = 32 for GPS).

Streams can be sent up to every 5 seconds (i.e. 12
streams/min or 720 streams/h), which is critical for precise
satellite clocks computations. Using these presets, one can
compute the amount of downloaded data when retrieving
streams for 1h.
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TABLE I
SSR MESSAGES SIZES [10]

Message ID Size per satellite (bits) Size per satellite (Bytes)
1019 488 61
1057 227 29
1058 167 21

nsat = 32 nstreams = 720

nBytes,1019 = nsat × nstreams × 61

= 1 405 440 Bytes
(1)

nBytes,1057 = nsat × nstreams × 29

= 668 160 Bytes
(2)

nBytes,1058 = nsat × nstreams × 21

= 483 840 Bytes
(3)

nBytes,total = nBytes,1019 + nBytes,1057 + nBytes,1058

= 2557 440 Bytes
(4)

The amount of data to retrieve them is far greater than the
one needed for ultra-rapid orbits. However, looking only for
the specific data in the streams’ content would reduce the
consumption.

C. Optimized use of RTCM streams

The broadcast ephemeris orbital parameters in message
1019 are sent every 5 seconds but updated only every 2 hours
usually. Meaning that over a 1 hour interval, changes can only
happen once at most, and only two messages of this type need
to be downloaded through out the survey.

Secondly, according to [8], which looked into the degrada-
tion of IGS-RTS products in case of interruptions in the caster
connections, it is possible to use the corrections products with
longer update’s time. If no model is applied, all corrections
degrade quickly, with 5 cm additional error after 3 minutes
for the GPS constellation. However, by fitting polynomials
of degree 2 to 4 for interpolating the corrections, the study
showed that the use of an orbital correction could be pushed
up to 5 min for GPS satellites, staying under the 2 cm threshold
of additional error. Regarding clocks corrections, since their
variations can be associated to a random walk, polynomial
fitting does not improve the interpolation, and other types of
model are needed. Yet, judging by their results on the block
II-F GPS satellites with Rubidium clocks hardware, the clocks
corrections tend to be valid on longer intervals, staying below
the 2 cm threshold of additional error with intervals up to 1
min. Another important information is that block II-F GPS
is the only one sending both L1 and L5 signals [15]. In the
future, IoT devices which will perform PPP will tend to receive
both L1 and L5 signals at least, since the L5 signals offer a
better resistance to environment degradation [4]. In our case,
only those signals are received by the Xiaomi Mi8 with the
Broadcom BCM4775X GNSS receiver. This means that PPP

being only computed with satellites with both signals (for
signal combination evoked in section I and ionosphere effects
reduction), only GPS satellites from block II-F can be used.
Therefore clocks corrections received for those satellites can
be interpolated longer.

Note that [8] analysis was only performed on GPS and
GLONASS constellations. GALILEO system and new gen-
eration GPS Block-III containing more accurate clocks (up to
half a nanosecond [16]), the use of satellites clocks corrections
could be valid on longer periods. This would need to be
investigated by further studies in the future.

We can recompute eqs. (1) to (4) with a smarter streams
per hour ratio.

nsat = 32 nstreams = 2

nBytes,1019 = nsat × nstreams × 61

= 3 904 Bytes
(5)

nsat = 32 nstreams = 12

nBytes,1057 = nsat × nstreams × 29

= 11 136 Bytes
(6)

nsat = 32 nstreams = 60

nBytes,1058 = nsat × nstreams × 21

= 40 320 Bytes
(7)

nBytes,total = nBytes,1019 + nBytes,1057 + nBytes,1058

= 55 360 Bytes
(8)

The data consumption is strongly reduced in eq. 8 compared to
eq. 4. Compared to ultra-rapid products, the data consumption
with the usage of RTCM streams is nearly 3.5 times better.
However, this also means that ultra-rapid product are still
more interesting for long term computations. For example,
for an acquisition longer than 4 h ultra-rapid products will
be preferable, since streams clocks corrections can not be
interpolated more than 1 min [8] and ultra-rapid products are
valid for a period of 6 h before being updated. Yet, for precise
satellite clock modeling, streams remain better than ultra-
rapid products, which consequently provides a more accurate
positioning solution. The data consumption estimations were
made for computations using only the GPS constellation. But
in case of multiple system being used, the IGS-RTS is the
only remaining solution.

This smart use of the streams can be handled in two different
ways: (1) on the client side, with connection to caster when
orbits and clocks data are needed; (2) on the caster side, with
corrections sent on extended periods.

D. Smart handling of streams on Client and Caster sides

Casters send streams continuously to connected devices, but
without explicit requests of the devices for every new streams.
One caster usually sends multiple types of messages, each
with its own update rate. A device might only need to use a
part of this stream, but it needs to download all the messages
continuously to find the wanted one. If the caster sending data
is configured to send clocks corrections every 5 seconds, orbits
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corrections every 30 seconds and broadcast ephemeris every
minute (a typical caster configuration), the amount of used
internet data is very high, as we demonstrate in section III-B.

A first way to introduce an efficient use of RTCM streams
is to adjust the caster’s configuration. While configuring on a
caster the exact need of a device is the most efficient way, it is
not optimized and counter productive as the role of a caster is
to be used by many devices with possibly different positioning
protocol, algorithm and frequency update rates.

Another way is to leave this caster’s configuration and to im-
plement a connection rate on the device side. The device stays
connected to receive the stream and disconnects afterwards
from the caster. The re-connection would occur only when
the device needs new information, preventing it to download
unnecessary data. While this is a more optimized use of the
device’s internet data, it still downloads many unnecessary
information every time it connects to the caster. It might only
need clocks corrections update for example and not orbits
updates. Moreover, it would multiply the connections to the
casters for each connected devices, leading to an overloading
of the caster, not meant to be used that way but rather as a
sender to passive listener.

A third and more optimized way would be using both
solutions and multiple casters instead of using only one.
Different casters sending similar info can be found on the IGS-
RTS servers, however all the messages are sent in high rates on
all the casters. Recently, the ”RTCM3EPH” mount point was
added on the IGS server ”rt.igs.net”, offering combined broad-
cast orbits for all constellations (GPS, GLONASS, GALILEO,
BEIDOU, QZSS) sent at a high rate of every 5 seconds,
with different available mount point if only one constellation
is needed (e.g. RTCM3EPH-GPS). Previous solution was to
connect to a nearby caster receiving the same satellites as the
device does, which usually was also sending observation data
at the same time, unnecessary for PPP computations on the
device and therefore a waste of data. With this new type of
caster, efficient use of RTCM streams can be performed, so
that only the needed data is retrieved by the IoT device.

As we mentioned before, broadcast ephemeris data only
changes every 2h and its retrieval can therefore be done only
once in that time. The receiver can verify the IoD of the
corrections to be sure that it has the right data set. Once the
IoD changed, he can reconnect to the caster and wait for the
new ephemeris streams, then disconnect from it again. For
data with low changing rate like the ephemeris, connection
and disconnection could be performed without impacting the
caster itself. However, for fast changing data like orbits and
clocks corrections, the stream itself would need to be adapted.
A possible way would be to set up two casters. One with a
very high rate, in order to retrieve all the possible corrections
in less than minute, while the other caster would have a lower
rate, similar to the specifications in section III-C. Once booted
up, the device would first connect to the high rate caster for
initialization, then switch to the lower rate caster. The usage of
internet would be minimized to the strictly required data while
keeping a good precision for PPP positioning requirements.

While the device side of smart use of streams is easy to
implement, the caster side might be hard to manage since
they can not be regulated from the external devices. A possible
answer is to set up its own caster, forwarding the data coming
from a mount point in the network to another address to the
desire rate. The BNC ”Client” software allows this, forwarding
the received corrections to a local network port where the
machine is connected to. Another way is to use the BNC
”Caster” software, but it must be purchased.

IV. RTCM STREAMS INTEGRATION IN ANDROID

Inside GeolocPVT application, RTCM streams are retrieved
and decoded, for them to be used afterwards in real time com-
putations. Their implementation was done by using GoGPS, an
open source code license under the GPL available on Github
and which has been ported in Java [17].

A. GoGPS as a Java Library

GoGPS Java is an adaptation of a MATLAB version and
developed by [17]. It was developed for GPS positioning. Even
if it wasn’t developed as an Android app, it can be used as
library with the app GeolocPVT developed in Java too. This
gives us a very large toolbox with the functions to connect to
a mount point sending RTCM streams and decode them. The
functions need to be generalized and adapted for all GNSS
systems since the app will use all the constellations available
in the Xiaomi Mi8. GALILEO was first to be implemented
and the integration of the BEIDOU system is ongoing.

The GoGPS Java port doesn’t offer any documentation
for implementing the library. Regarding the RTCM decod-
ing capacities, it was coded to receive observation RTCM
messages (e.g. 1004, 1005, ...) but no correction messages
whatsoever (e.g. 1057,1058,...). After a stream is received, its
header is decoded and compared to the contents of a Java
Hashmap object, containing a list of decoding functions for
each message’s type. To implement the correction messages,
a class was added for each message type. The decoding
functions were coded using the RTCM manual [10] and the
RTKLIB C++ library source code [18], which also implements
SSR stream decoding in its latest version. The received streams
are in a binary format (i.e. bits strings) and need to be
converted to retrieve the data. RTCM standards [10] describe
how this is done, the same way the GPS and GALILEO ICD’s
describe how to decode the navigation message. It follows the
basic logic of electronics’ bytes decoding [19]. Those classes
were added to the HashMap object as new entries.

Connection to caster and mount points are also performed
in GoGPS. First, a custom class instantiating the GoGPS
Interface StreamEventListener needs to be created. Then, a
Runnable class is created, adapting the code available in
RTCM3Client to connect to desired host (i.e server’s address)
and mount point. Credentials need to be given too so the
connection is authenticated.

Once those different adjustments are made, retrieval of the
wanted stream can be done directly with the smartphone in real
time and corrections can be computed. Detailed equations can
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be found in [9]. Those corrections are then directly applied
to the satellites’ positions and clocks from the broadcast
ephemeris.

B. Future developments

A real time PPP algorithm is in development, with ambigu-
ities estimation, which surely would lead to better positioning
capabilities where the effect of the precise orbits will be
visible. Yet, because the results of several studies [4]–[6]
showed long convergence time superior to one hour, data
consumption is a reality to be accounted for in the app
development. Smart use of the streams will be integrated in
the app for a more optimized use of the internet data during
surveys and testing of the PPP algorithm.

With the development of SSR to stage 2 [9], other types
of corrections messages are available on “CLK93”. Message
1264 gives a real time estimation of the Vertical Total Electron
Content (VTEC) in the ionosphere, which is particularly useful
for single frequency receivers. Messages 1265 to 1270 give a
real time estimation of the satellite phase biases for the dif-
ferent constellations, which is also an important consideration
for most PPP computations [20].

V. CONCLUSION

With Google giving access to raw GNSS measurements
through the Android API, precise positioning using a smart-
phone is now a reality. We presented how this has been
performed on several smartphones and why the Xiaomi Mi8
is a game changer in being the first smartphone with dual-
frequency GNSS capacities. PPP is now a possible and real-
time PPP will be soon be available for coming smartphones,
while adding challenges to computations. Following that, we
looked into the available precise products of satellites’ orbits
and clocks, while focusing on their internet data consump-
tion. This was done on Android smartphone experience, even
though this will apply to any IoT devices performing PPP com-
putations. IGS-RTS products compared to ultra-rapid products
have proven to be less Internet data consuming on short com-
putation intervals if RTCM streams are gathered efficiently and
interpolation are performed on the corrections. However, for
continuous positioning (longer than 4h), ultra-rapid products
are more suitable to minimize data consumption. Yet, for
precise positioning like PPP, IGS-RTS showed better precision
than the ultra-rapids products, especially on satellite’s clocks
estimation, while being available for nearly every type of
constellation (GPS, GALILEO, QZSS, BEIDOU) on specific
mount points. Finally, we showed that their retrieval directly
through an Android application can be done by using the
GoGPS Java code as Android library and by enhancing its
capacities for retrieval of correction messages. Right now,
only orbits and clocks products have been tested. For future
developments, other corrections messages than orbits and
clocks will be decoded, increasing the data consumption but
resulting in better positioning and smaller convergence time.
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